Catalytic graphitization of single-crystal diamond

被引:40
作者
Tulic, Semir [1 ]
Waitz, Thomas [1 ]
Caplovicova, Maria [2 ]
Habler, Gerlinde [3 ]
Vretenar, Viliam [2 ]
Susi, Toma [1 ]
Skakalova, Viera [1 ,4 ]
机构
[1] Univ Vienna, Fac Phys, Phys Nanostruct Mat, Boltzmanngasse 5, A-1090 Vienna, Austria
[2] Slovak Univ Technol Bratislava, Ctr Nanodiagnost, Vazovova 5, Bratislava 81243, Slovakia
[3] Univ Vienna, Dept Lithospher Res, Althanstr 14, A-1090 Vienna, Austria
[4] Slovak Acad Sci, Inst Elect Engn, Dubravska Cesta 9, Bratislava 84104, Slovakia
基金
欧洲研究理事会; 奥地利科学基金会;
关键词
Diamond-to-graphite transformation; Ni-catalyzed graphitization; Single crystal diamond; Atomically-resolved TEM; Electrical conductance; Electron energy loss spectroscopy; CARBON; GRAPHENE; NICKEL; NI;
D O I
10.1016/j.carbon.2021.08.082
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Diamond and graphene are carbon allotropes with starkly different physical characteristics. Their combination into graphene-on-diamond heterostructures could benefit from the complementary properties of both components. Graphitization of single-crystalline diamond surfaces is a promising synthesis route, but a clear understanding of the growth of graphene or graphite from solid carbon sources is so far missing. Using aberration-corrected transmission electron microscopy, Raman spectroscopy, and electrical transport measurements, we provide detailed insight in the mechanisms of structural changes of nickel-catalyzed graphitization of diamond. We propose competing atomistic processes occurring at contact sites of diamond and Ni, depending on diamond surface terminations. One-dimensional etching process dominates on (111) diamond surfaces that remain almost atomically flat during graphitization. Two-dimensional etching of (110) and (100) diamond surfaces results in Ni drilling into the diamond substrate. Our findings also provide evidence on the reaction rates of the catalysis. The most reactive diamond surface in the (100) orientation is covered with the largest amount of well-crystallized graphite, whereas the (111) surface shows the highest stability against catalytic etching. In the latter case, only a thin disordered graphite layer is formed, yielding the lowest electric conductance. By clarifying these etching mechanisms, our results can improve the synthesis of grapheneon-diamond heterostructures. (c) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:300 / 313
页数:14
相关论文
共 33 条
[1]  
[Anonymous], 2012, HDB CARBON GRAPHITE
[2]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/NMAT3064, 10.1038/nmat3064]
[3]   On the mechanisms of precipitation of graphene on nickel thin films [J].
Baraton, L. ;
He, Z. B. ;
Lee, C. S. ;
Cojocaru, C. S. ;
Chatelet, M. ;
Maurice, J. -L. ;
Lee, Y. H. ;
Pribat, D. .
EPL, 2011, 96 (04)
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   Single-Step Formation of Ni Nanoparticle-Modified Graphene-Diamond Hybrid Electrodes for Electrochemical Glucose Detection [J].
Cui, Naiyuan ;
Guo, Pei ;
Yuan, Qilong ;
Ye, Chen ;
Yang, Mingyang ;
Yang, Minghui ;
Chee, Kuan W. A. ;
Wang, Fei ;
Fu, Li ;
Wei, Qiuping ;
Lin, Cheng-Te ;
Gao, Jingyao .
SENSORS, 2019, 19 (13)
[6]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107
[7]  
Fu B., 2019, Adv. Mater., V8, P61, DOI 10.11648/j.am.20190802.14
[8]   Crystallization characteristics and chemical bonding properties of nickel carbide thin film nanocomposites [J].
Furlan, Andrej ;
Lu, Jun ;
Hultman, Lars ;
Jansson, Ulf ;
Magnuson, Martin .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (41)
[9]   Atomic-scale imaging of carbon nanofibre growth [J].
Helveg, S ;
López-Cartes, C ;
Sehested, J ;
Hansen, PL ;
Clausen, BS ;
Rostrup-Nielsen, JR ;
Abild-Pedersen, F ;
Norskov, JK .
NATURE, 2004, 427 (6973) :426-429
[10]   Surface diffusion:: The low activation energy path for nanotube growth -: art. no. 036101 [J].
Hofmann, S ;
Csányi, G ;
Ferrari, AC ;
Payne, MC ;
Robertson, J .
PHYSICAL REVIEW LETTERS, 2005, 95 (03)