Dipole and tripole metallodielectric photonic bandgap (MPBG) structures for microwave filter and antenna applications

被引:20
|
作者
Lee, YLR [1 ]
Chauraya, A [1 ]
Lockyer, DS [1 ]
Vardaxoglu, JC [1 ]
机构
[1] Loughborough Univ Technol, Dept Elect & Elect Engn, Loughborough LE11 3TU, Leics, England
来源
IEE PROCEEDINGS-OPTOELECTRONICS | 2000年 / 147卷 / 06期
关键词
D O I
10.1049/ip-opt:20000892
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A photonic band gap structure made from periodic arrays of conducting dipoles and tripoles on a dielectric is presented. Using the proposed structures, several example devices have been demonstrated for microstrip resonators and filters as well as patch antennas. Measured and predicted frequency responses of a microstrip line using a dual dipole metallodielectric photonic bandgap (MPBG) structure show a 40% band width centred at 10 GHz. A planar microstrip resonator using a dipole MPBG shows a slower wave performance and a higher Q factor when compared with the conventional half-wavelength resonator. Three patch antenna designs on different dielectric constant substrates using a tripole MBPG produce better return loss, higher boresight gains (up to 3 dB) and smoother radiation patterns as a result of surface wave suppression.
引用
收藏
页码:395 / 400
页数:6
相关论文
共 50 条
  • [21] Transmission line-periodic circuit representation of planar microwave photonic bandgap structures
    Rahman, M
    Stuchly, MA
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2001, 30 (01) : 15 - 19
  • [22] 3-D photonic bandgap structures in the microwave regime by fused deposition of multimaterials
    Pilleux, ME
    Allahverdi, M
    Chen, YR
    Lu, KC
    Jafari, MA
    Safari, A
    RAPID PROTOTYPING JOURNAL, 2002, 8 (01) : 46 - 52
  • [23] Improved photonic bandgap cavity and metal rod lattices for microwave and millimeter wave applications
    Shapiro, MA
    Brown, WJ
    Chen, C
    Khemani, V
    Mastovsky, I
    Sirigiri, JR
    Temkin, RJ
    2000 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM DIGEST, VOLS 1-3, 2000, : 581 - 584
  • [24] Improved photonic bandgap cavity and metal rod lattices for microwave and millimeter wave applications
    Shapiro, M.A.
    Brown, W.J.
    Chen, C.
    Khemani, V.
    Mastovsky, I.
    Sirigiri, J.R.
    Temkin, R.J.
    IEEE MTT-S International Microwave Symposium Digest, 2000, 1 : 581 - 584
  • [25] Analysis of membrane support structures for integrated antenna usage on two-dimensional photonic-bandgap structures
    Reynolds, AL
    Chong, HMH
    Thayne, IG
    Arnold, JM
    de Maagt, P
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2001, 49 (07) : 1254 - 1261
  • [26] 100 dB Microwave Photonic Filter for Communications and RF Sensing Applications
    Parihar, Reena
    Girish, K.
    Raj, Piyush
    Choudhary, Amol
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (21) : 7643 - 7651
  • [27] Improving the performance of a patch antenna array by using photonic bandgap structures at X-band
    Jimenez-Guzman, Gabriel Angel
    Tirado-Mendez, Jose Alfredo
    Rangel-Merino, Arturo
    Vasquez-Toledo, Luis Alberto
    Marcelin-Jimenez, Ricardo
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2020, 34 (16) : 2130 - 2146
  • [28] Log-Periodic Dipole Array Antenna Design for Microwave Imaging Applications
    Uyanik, Cafer
    Yildiz, Mustafa Ozkan
    Dogu, Semih
    Ertay, Agah Oktay
    Akduman, Ibrahim
    2016 NATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND BIOMEDICAL ENGINEERING (ELECO), 2016, : 554 - 557
  • [29] Novel Microwave Bandpass Filter with Compact Size and Good Out-of-band Performance for Microwave Photonic Filter Applications
    Escobar-Pelaez, Johanny
    Olvera-Cervantes, Jose-Luis
    Zaldivar-Huerta, Ignacio E.
    Corona-Chavez, Alonso
    Garcia-Juarez, Alejandro
    Rodriguez-Asomoza, Jorge
    2012 IEEE 55TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2012, : 129 - 133
  • [30] Topology optimization of continuum supporting structures for microwave antenna applications
    Zhang, Shuxin
    Duan, Baoyan
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2020, 62 (05) : 2409 - 2422