A class of time-fractional diffusion equations with generalized fractional derivatives

被引:7
|
作者
Alikhanov, Anatoly A. [1 ]
Huang, Chengming [2 ]
机构
[1] North Caucasus Fed Univ, North Caucasus Ctr Math Res, Pushkin str 1, Stavropol 355017, Russia
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
基金
俄罗斯基础研究基金会;
关键词
Caputo fractional derivative; Erdelyi-Kober fractional derivative; Hadamard fractional derivative; Generalized fractional derivative; Fractional diffusion equation; BOUNDARY-VALUE-PROBLEMS; VARIABLE-ORDER; NUMERICAL-METHOD; OPERATORS; SCHEMES;
D O I
10.1016/j.cam.2022.114424
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider generalized fractional derivatives, which are characterized by a scale function and a weight function. It is proposed to replace the time variable with a new variable, associated with the scale and weight functions, which allows us to reduce the problems for equations with generalized fractional derivatives to problems for equations with the usual fractional derivative. The equations obtained after the above change of variables are quite well studied, so that one can apply well-known effective numerical methods and use the reverse substitution to find solutions to the original problems. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] A finite element approximation for a class of Caputo time-fractional diffusion equations
    Ammi, Moulay Rchid Sidi
    Jamiai, Ismail
    Torres, Delfim F. M.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 78 (05) : 1334 - 1344
  • [12] Compact structures in a class of nonlinearly dispersive equations with time-fractional derivatives
    Odibat, Zaid M.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (01) : 273 - 280
  • [13] Exact solutions of generalized nonlinear time-fractional reaction–diffusion equations with time delay
    P. Prakash
    Sangita Choudhary
    Varsha Daftardar-Gejji
    The European Physical Journal Plus, 135
  • [14] Well-posedness results for a class of semilinear time-fractional diffusion equations
    Bruno de Andrade
    Vo Van Au
    Donal O’Regan
    Nguyen Huy Tuan
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [15] Well-posedness results for a class of semilinear time-fractional diffusion equations
    de Andrade, Bruno
    Vo Van Au
    O'Regan, Donal
    Nguyen Huy Tuan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05):
  • [16] Generalized Kudryashov Method for Time-Fractional Differential Equations
    Demiray, Seyma Tuluce
    Pandir, Yusuf
    Bulut, Hasan
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [17] Maximum principle for the generalized time-fractional diffusion equation
    Luchko, Yury
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) : 218 - 223
  • [18] Stochastic solutions of generalized time-fractional evolution equations
    Bender, Christian
    Butko, Yana A.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (02) : 488 - 519
  • [19] Stochastic solutions of generalized time-fractional evolution equations
    Christian Bender
    Yana A. Butko
    Fractional Calculus and Applied Analysis, 2022, 25 : 488 - 519
  • [20] CAUCHY PROBLEMS FOR THE TIME-FRACTIONAL DEGENERATE DIFFUSION EQUATIONS
    Borikhanov, M. B.
    Smadiyeva, A. G.
    JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2023, 117 (01): : 15 - 23