Corrosion resistance of pulsed laser modified AZ31 Mg alloy surfaces

被引:26
作者
Fajardo, S. [1 ]
Miguelez, L. [1 ]
Arenas, M. A. [1 ]
de Damborenea, J. [1 ]
Llorente, I [1 ]
Feliu, S. [1 ]
机构
[1] Natl Ctr Met Res CENIM CSIC, Dept Surface Engn Corros & Durabil, Madrid 28040, Spain
关键词
Mg alloys; laser surface melting (LSM); Electrochemical impedance; Potentiodynamic polarization; corrosion resistance; PLASMA ELECTROLYTIC OXIDATION; MAGNESIUM ALLOY; ELECTROCHEMICAL IMPEDANCE; BEAM TREATMENT; MASS-LOSS; BEHAVIOR; MICROSTRUCTURE; POLARIZATION; SPECTROSCOPY; WEAR;
D O I
10.1016/j.jma.2021.09.020
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The effect of laser surface melting on the corrosion resistance of AZ31 Mg alloy in 0.1 M NaCl solution was investigated using different laser processing conditions (energy densities of 14 and 17 J cm(-2)). Laser treatment induced rough surfaces primarily composed of oxidized species of Mg. XPS analysis revealed that the surface concentration of Al increased significantly as a consequence of LSM. Electrochemical impedance spectroscopy showed that the laser treatment remarkably increased the polarization resistance of the AZ31 Mg alloy and induced a passive-like region of about 100 mV, as determined by potentiodynamic polarization. Analysis of the results obtained provide solid evidence that within the immersion times used in this study, LSM treatment increased the corrosion resistance of AZ31 Mg alloy under open circuit conditions and anodic polarization. (C) 2021 Chongqing University. Publishing services provided by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
引用
收藏
页码:756 / 768
页数:13
相关论文
共 46 条
  • [11] Characterization and performance of laser melted AZ91D and AM60B
    Dubé, D
    Fiset, M
    Couture, A
    Nakatsugawa, I
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 299 (1-2): : 38 - 45
  • [12] Fundamentals and advances in magnesium alloy corrosion
    Esmaily, M.
    Svensson, J. E.
    Fajardo, S.
    Birbilis, N.
    Frankel, G. S.
    Virtanen, S.
    Arrabal, R.
    Thomas, S.
    Johansson, L. G.
    [J]. PROGRESS IN MATERIALS SCIENCE, 2017, 89 : 92 - 193
  • [13] Electrochemical study on the corrosion behaviour of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chlorides
    Fajardo, S.
    Bastidas, D. M.
    Criado, M.
    Bastidas, J. M.
    [J]. ELECTROCHIMICA ACTA, 2014, 129 : 160 - 170
  • [14] Fajardo S., 2018, CRITICAL REV APPL EL, DOI [10.5772/intechopen.79497, DOI 10.5772/INTECHOPEN.79497]
  • [15] Effect of the chemistry and structure of the native oxide surface film on the corrosion properties of commercial AZ31 and AZ61 alloys
    Feliu, Sebastian, Jr.
    Maffiotte, C.
    Samaniego, A.
    Carlos Galvan, Juan
    Barranco, Violeta
    [J]. APPLIED SURFACE SCIENCE, 2011, 257 (20) : 8558 - 8568
  • [16] Effect of high current pulsed electron beam treatment on surface microstructure and wear and corrosion resistance of an AZ91HP magnesium alloy
    Gao, Bo
    Hao, Shengzhi
    Zou, Jianxin
    Wu, Wenyuan
    Tu, Ganfeng
    Dong, Chuang
    [J]. SURFACE & COATINGS TECHNOLOGY, 2007, 201 (14) : 6297 - 6303
  • [17] Corrosion behavior of electron beam processed AZ91 magnesium alloy
    Iranshahi, Fatemeh
    Nasiri, Mohammad Bagher
    Warchomicka, Fernando Gustavo
    Sommitsch, Christof
    [J]. JOURNAL OF MAGNESIUM AND ALLOYS, 2020, 8 (04) : 1314 - 1327
  • [18] JAFAR MI, 1993, AM SOC TEST MATER, V1188, P384, DOI 10.1520/STP18081S
  • [19] Excimer laser treatment of ZE41 magnesium alloy for corrosion resistance and microhardness improvement
    Khalfaoui, Walid
    Valerio, Eric
    Masse, Jean Eric
    Autric, Michel
    [J]. OPTICS AND LASERS IN ENGINEERING, 2010, 48 (09) : 926 - 931
  • [20] Accurate Electrochemical Measurement of Magnesium Corrosion Rates; a Combined Impedance, Mass-Loss and Hydrogen Collection Study
    King, A. D.
    Birbilis, N.
    Scully, J. R.
    [J]. ELECTROCHIMICA ACTA, 2014, 121 : 394 - 406