共 50 条
Laser-induced graphene fibers
被引:366
|作者:
Duy, Luong Xuan
[1
,2
]
Peng, Zhiwei
[2
]
Li, Yilun
[2
]
Zhang, Jibo
[2
]
Ji, Yongsung
[2
]
Tour, James M.
[2
,3
,4
,5
]
机构:
[1] Rice Univ, Appl Phys Program, 6100 Main St, Houston, TX 77005 USA
[2] Rice Univ, Dept Chem, 6100 Main St MS 222, Houston, TX 77005 USA
[3] Rice Univ, Dept Mat Sci & NanoEngn, 6100 Main St, Houston, TX 77005 USA
[4] Rice Univ, Smalley Curl Inst, 6100 Main St, Houston, TX 77005 USA
[5] Rice Univ, NanoCarbon Ctr, 6100 Main St, Houston, TX 77005 USA
来源:
关键词:
Laser induced graphene;
Laser induced graphene fibers;
Laser photothermolysis;
Polymer carbonization;
Microsupercapacitor;
CARBON NANOTUBES;
POLYIMIDE;
SUPERCAPACITORS;
CARBONIZATION;
MECHANISM;
GROWTH;
D O I:
10.1016/j.carbon.2017.10.036
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
In our previous research, we found that the laser induction process on commercially available polyimide sheets is a cost-effective method for the formation of porous graphene that can be subsequently fabricated into mechanically flexible devices. Here we study the parameters required for the formation of varied laser-induced graphene (LIG) morphologies by tuning the laser radiation energy. It was found that a critical fluence point of similar to 5 J/cm(2) is needed to initiate the carbonization process regardless of the laser power. When increasing the radiation energy, the physical formation of LIG follows a fluid dynamics process in that the morphology of the LIG progressively changes from sheets to fibers and finally to droplets. We then demonstrate that a morphology of LIG nanomaterial, LIG fibers (LIGF), can be generated by this one-step laser photothermolysis process at a radiation energy >40 J/cm(2). The LIGF are hollow with a LIG wall and form vertically aligned fibers up to 1 mm in height. Microsupercapacitor (MSC) devices fabricated from LIGF and LIGF-LIG hybrids show 2x the specific areal capacitance over MSCs made entirely from LIG, thereby underscoring the potential for LIGF in flexible device applications. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:472 / 479
页数:8
相关论文