REVERSE ORBIFOLD CONSTRUCTION AND UNIQUENESS OF HOLOMORPHIC VERTEX OPERATOR ALGEBRAS

被引:9
作者
Lam, Ching Hung [1 ]
Shimakura, Hiroki [2 ,3 ]
机构
[1] Acad Sinica, Inst Math, Taipei 10617, Taiwan
[2] Natl Ctr Theoret Sci Taiwan, Taipei, Taiwan
[3] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
关键词
MODULAR-INVARIANCE; TRACE FUNCTIONS; REPRESENTATIONS; CLASSIFICATION;
D O I
10.1090/tran/7887
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we develop a general technique for proving the uniqueness of holomorphic vertex operator algebras based on the orbifold construction and its "reverse" process. As an application, we prove that the structure of a strongly regular holomorphic vertex operator algebra of central charge 24 is uniquely determined by its weight 1 Lie algebra if the Lie algebra has the type E(6,3)G(2,1)(3), A(2,3)(6), or A(5,3)D(4,3)A(1,1)(3).
引用
收藏
页码:7001 / 7024
页数:24
相关论文
共 42 条
  • [1] Rationality, regularity, and C2-cofiniteness
    Abe, T
    Buhl, G
    Dong, CY
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (08) : 3391 - 3402
  • [2] [Anonymous], 1988, Pure and Applied Mathematics
  • [3] Arakawa T, 2017, COMMUN MATH PHYS, V355, P339, DOI 10.1007/s00220-017-2901-2
  • [5] Conway J. H., 1985, ATLAS of finite groups
  • [6] Conway J. H., 1999, Grundlehren Math. Wiss.., V290, DOI [10.1007/978-1-4757-6568-7, DOI 10.1007/978-1-4757-6568-7]
  • [7] Conformal field theories, representations and lattice constructions
    Dolan, L
    Goddard, P
    Montague, P
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 179 (01) : 61 - 120
  • [8] Dong C., 1999, Contemp. Math., V248, P117
  • [9] Dong CY, 2006, INT MATH RES NOTICES, V2006
  • [10] On orbifold theory
    Dong, Chongying
    Ren, Li
    Xu, Feng
    [J]. ADVANCES IN MATHEMATICS, 2017, 321 : 1 - 30