COVARIANT STAR PRODUCT ON SYMPLECTIC AND POISSON SPACE-TIME MANIFOLDS

被引:6
作者
Chaichian, M. [1 ,2 ]
Oksanen, M. [1 ]
Tureanu, A. [1 ,2 ]
Zet, G. [3 ]
机构
[1] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland
[2] Helsinki Inst Phys, FI-00014 Helsinki, Finland
[3] Gh Asachi Tech Univ, Dept Phys, Iasi 700050, Romania
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2010年 / 25卷 / 18-19期
基金
芬兰科学院;
关键词
Noncommutative geometry; symplectic manifolds; covariant star-product; noncommutative gravity; QUANTIZATION;
D O I
10.1142/S0217751X10049785
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A covariant Poisson bracket and an associated covariant star product in the sense of deformation quantization are defined on the algebra of tensor-valued differential forms on a symplectic manifold, as a generalization of similar structures that were recently defined on the algebra of (scalar-valued) differential forms. A covariant star product of arbitrary smooth tensor fields is obtained as a special case. Finally, we study covariant star products on a more general Poisson manifold with a linear connection, first for smooth functions and then for smooth tensor fields of any type. Some observations on possible applications of the covariant star products to gravity and gauge theory are made.
引用
收藏
页码:3765 / 3796
页数:32
相关论文
共 20 条
[1]   Universal star products [J].
Ammar, Mourad ;
Chloup, Veronique ;
Gutt, Simone .
LETTERS IN MATHEMATICAL PHYSICS, 2008, 84 (2-3) :199-215
[2]  
[Anonymous], 2002, IRMA Lectures Maths. Theor. Phys
[3]   Semiclassical differential structures [J].
Beggs, EJ ;
Majid, S .
PACIFIC JOURNAL OF MATHEMATICS, 2006, 224 (01) :1-44
[4]   A path integral approach to the Kontsevich quantization formula [J].
Cattaneo, AS ;
Felder, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 212 (03) :591-611
[5]   Noncommutative gauge theory using a covariant star product defined between Lie-valued differential forms [J].
Chaichian, M. ;
Oksanen, M. ;
Tureanu, A. ;
Zet, G. .
PHYSICAL REVIEW D, 2010, 81 (08)
[6]   Gauge field theories with covariant star-product [J].
Chaichian, M. ;
Tureanu, A. ;
Zet, G. .
JOURNAL OF HIGH ENERGY PHYSICS, 2009, (07)
[7]   Poisson algebra of differential forms [J].
Chu, CS ;
Ho, PM .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (31) :5573-5587
[8]   Noncommutative field theory [J].
Douglas, MR ;
Nekrasov, NA .
REVIEWS OF MODERN PHYSICS, 2001, 73 (04) :977-1029
[9]  
Fernandes RL, 2000, J DIFFER GEOM, V54, P303
[10]  
Ho PM, 2001, PHYS REV D, V64, DOI 10.1103/PhysRevD.64.126002