Maturation of EPSCs and intrinsic membrane properties enhances precision at a cerebellar synapse

被引:121
作者
Cathala, L [1 ]
Brickley, S [1 ]
Cull-Candy, S [1 ]
Farrant, M [1 ]
机构
[1] UCL, Dept Pharmacol, London WC1E 6BT, England
基金
英国惠康基金;
关键词
cerebellum; granule cell; EPSC; AMPA receptor; NMDA receptor; postnatal development; intrinsic membrane properties; EPSP;
D O I
10.1523/JNEUROSCI.23-14-06074.2003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The timing of action potentials is an important determinant of information coding in the brain. The shape of the EPSP has a key influence on the temporal precision of spike generation. Here we use dynamic clamp recording and passive neuronal models to study how developmental changes in synaptic conductance waveform and intrinsic membrane properties combine to affect the EPSP and action potential generation in cerebellar granule cells. We recorded EPSCs at newly formed and mature mossy fiber - granule cell synapses. Both quantal and evoked currents showed a marked speeding of the AMPA receptor-mediated component. We also found evidence for age- and activity-dependent changes in the involvement of NMDA receptors. Although AMPA and NMDA receptors contributed to quantal EPSCs at immature synapses, multiquantal release was required to activate NMDA receptors at mature synapses, suggesting a developmental redistribution of NMDA receptors. These changes in the synaptic conductance waveform result in a faster rising EPSP and reduced spike latency in mature granule cells. Mature granule cells also have a significantly decreased input resistance, contributing to a faster decaying EPSP and a reduced spike jitter. We suggest that these concurrent developmental changes, which increase the temporal precision of EPSP-spike coupling, will increase the fidelity with which sensory information is processed within the input layer of the cerebellar cortex.
引用
收藏
页码:6074 / 6085
页数:12
相关论文
共 80 条
[1]   DIFFERENTIAL EXPRESSION OF 5 N-METHYL-D-ASPARTATE RECEPTOR SUBUNIT MESSENGER-RNAS IN THE CEREBELLUM OF DEVELOPING-RATS AND ADULT-RATS [J].
AKAZAWA, C ;
SHIGEMOTO, R ;
BESSHO, Y ;
NAKANISHI, S ;
MIZUNO, N .
JOURNAL OF COMPARATIVE NEUROLOGY, 1994, 347 (01) :150-160
[2]  
BAUDE A, 1994, J NEUROSCI, V14, P2830
[3]   NMDA AND NON-NMDA RECEPTORS ARE CO-LOCALIZED AT INDIVIDUAL EXCITATORY SYNAPSES IN CULTURED RAT HIPPOCAMPUS [J].
BEKKERS, JM ;
STEVENS, CF .
NATURE, 1989, 341 (6239) :230-233
[4]   Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus [J].
Brenowitz, S ;
Trussell, LO .
JOURNAL OF NEUROSCIENCE, 2001, 21 (23) :9487-9498
[5]   Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABA(A) receptors [J].
Brickley, SG ;
CullCandy, SG ;
Farrant, M .
JOURNAL OF PHYSIOLOGY-LONDON, 1996, 497 (03) :753-759
[6]   Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance [J].
Brickley, SG ;
Revilla, V ;
Cull-Candy, SG ;
Wisden, W ;
Farrant, M .
NATURE, 2001, 409 (6816) :88-92
[7]  
Cajal S. R., 1995, HIST NEUROSCIENCE
[8]   NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity [J].
Carroll, RC ;
Zukin, RS .
TRENDS IN NEUROSCIENCES, 2002, 25 (11) :571-577
[9]   Quantal events shape cerebellar interneuron firing [J].
Carter, AG ;
Regehr, WG .
NATURE NEUROSCIENCE, 2002, 5 (12) :1309-1318
[10]   Prolonged synaptic currents and glutamate spillover at the parallel fiber to stellate cell synapse [J].
Carter, AG ;
Regehr, WG .
JOURNAL OF NEUROSCIENCE, 2000, 20 (12) :4423-4434