Inducible hyaluronan production reveals differential effects on prostate tumor cell growth and tumor angiogenesis

被引:50
作者
Bharadwaj, Alamelu G. [1 ]
Rector, Katherine [1 ]
Simpson, Melanie A. [1 ]
机构
[1] Univ Nebraska, Dept Biochem, Lincoln, NE 68588 USA
关键词
D O I
10.1074/jbc.M702964200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Prostate cancer progression can be predicted in human tumor biopsies by abundant hyaluronan ( HA) and its processing enzyme, the hyaluronidase HYAL1. Accumulation of HA is dictated by the balance between expression levels of HA synthases, the enzymes that produce HA polymers, and hyaluronidases, which process polymers to oligosaccharides. Aggressive prostate tumor cells express 20-fold higher levels of the hyaluronan synthase HAS3, but the mechanistic relevance of this correlation has not been determined. We stably overexpressed HAS3 in prostate tumor cells. Adhesion to extracellular matrix and cellular growth kinetics in vitro were significantly reduced. Slow growth in culture was restored either by exogenous addition of hyaluronidase or by stable HYAL1 coexpression. Coexpression did not improve comparably slow growth in mice, however, suggesting that excess hyaluronan production by HAS3 may alter the balance required for induced tumor growth. To address this, we used a tetracycline-inducible HAS3 expression system in which hyaluronan production could be experimentally controlled. Adjusting temporal parameters of hyaluronan production directly affected growth rate of the cells. Relief from growth suppression in vitro but not in vivo by enzymatic removal of HA effectively uncoupled the respective roles of hyaluronan in growth and angiogenesis, suggesting that growth mediation is less critical to establishment of the tumor than early vascular development. Collectively results also imply that HA processing by elevated HYAL1 expression in invasive prostate cancer is a requirement for progression.
引用
收藏
页码:20561 / 20572
页数:12
相关论文
共 79 条
[1]   Strong stromal hyaluronan expression is associated with PSA recurrence in local prostate cancer [J].
Aaltomaa, S ;
Lipponen, P ;
Tammi, R ;
Tammi, M ;
Viitanen, J ;
Kankkunen, JP ;
Kosma, VM .
UROLOGIA INTERNATIONALIS, 2002, 69 (04) :266-272
[2]   CD44 IS THE PRINCIPAL CELL-SURFACE RECEPTOR FOR HYALURONATE [J].
ARUFFO, A ;
STAMENKOVIC, I ;
MELNICK, M ;
UNDERHILL, CB ;
SEED, B .
CELL, 1990, 61 (07) :1303-1313
[3]   Inhibition of hyaluronan hydrolysis catalysed by hyaluronidase at high substrate concentration and low ionic strength [J].
Astériou, T ;
Vincent, JC ;
Trancbepain, F ;
Deschrevel, B .
MATRIX BIOLOGY, 2006, 25 (03) :166-174
[4]   CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion [J].
Bourguignon, LYW ;
Singleton, PA ;
Diedrich, F ;
Stern, R ;
Gilad, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (26) :26991-27007
[5]   Expression of the cytoskeleton linker protein ezrin in human cancers [J].
Bruce, Benjamin ;
Khanna, Gaurav ;
Ren, Ling ;
Landberg, Goran ;
Jirstrom, Karin ;
Powell, Charles ;
Borczuk, Alain ;
Keller, Evan T. ;
Wojno, Kirk J. ;
Meltzer, Paul ;
Baird, Kristin ;
McClatchey, Andrea ;
Bretscher, Anthony ;
Hewitt, Stephen M. ;
Khanna, Chand .
CLINICAL & EXPERIMENTAL METASTASIS, 2007, 24 (02) :69-78
[6]   Hyaluronan synthase-3 is upregulated in metastatic colon carcinoma cells and manipulation of expression alters matrix retention and cellular growth [J].
Bullard, KM ;
Kim, HR ;
Wheeler, MA ;
Wilson, CM ;
Neudauer, CL ;
Simpson, MA ;
McCarthy, JB .
INTERNATIONAL JOURNAL OF CANCER, 2003, 107 (05) :739-746
[7]   Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme [J].
Camenisch, TD ;
Spicer, AP ;
Brehm-Gibson, T ;
Biesterfeldt, J ;
Augustine, ML ;
Calabro, A ;
Kubalak, S ;
Klewer, SE ;
McDonald, JA .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 106 (03) :349-360
[8]   The six hyaluronidase-like genes in the human and mouse genomes [J].
Csoka, AB ;
Frost, GI ;
Stern, R .
MATRIX BIOLOGY, 2001, 20 (08) :499-508
[9]   The hyaluronidase gene HYAL1 maps to chromosome 3p21.2-p21.3 in human and 9F1-F2 in mouse, a conserved candidate tumor suppressor locus [J].
Csóka, TB ;
Frost, GI ;
Heng, HHQ ;
Scherer, SW ;
Mohapatra, G ;
Stern, R .
GENOMICS, 1998, 48 (01) :63-70
[10]   THE HYALURONAN RECEPTOR (CD44) PARTICIPATES IN THE UPTAKE AND DEGRADATION OF HYALURONAN [J].
CULTY, M ;
NGUYEN, HA ;
UNDERHILL, CB .
JOURNAL OF CELL BIOLOGY, 1992, 116 (04) :1055-1062