Progress of MCT Detector Technology at AIM Towards Smaller Pitch and Lower Dark Current

被引:31
作者
Eich, D. [1 ]
Schirmacher, W. [1 ]
Hanna, S. [1 ]
Mahlein, K. M. [1 ]
Fries, P. [1 ]
Figgemeier, H. [1 ]
机构
[1] AIM INFRAROT MODULE GmbH, Theresienstr 2, D-74072 Heilbronn, Germany
关键词
AIM; infrared detector; MCT; VLWIR; MWIR; HOT; small pixel pitch; HGCDTE;
D O I
10.1007/s11664-017-5596-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present our latest results on cooled p-on-n planar mercury cadmium telluride (MCT) photodiode technology. Along with a reduction in dark current for raising the operating temperature (T (op)), AIM INFRAROT-MODULE GmbH (AIM) has devoted its development efforts to shrinking the pixel size. Both are essential requirements to meet the market demands for reduced size, weight and power and high-operating temperature applications. Detectors based on the p-on-n technology developed at AIM now span the spectrum from the mid-wavelength infrared (MWIR) to the very long wavelength infrared (VLWIR) with cut-off wavelengths from 5 mu m to about 13.5 mu m at 80 K. The development of the p-on-n technology for VLWIR as well as for MWIR is mainly implemented in a planar photodetector design with a 20-mu m pixel pitch. For the VLWIR, dark currents significantly reduced as compared to 'Tennant's Rule 07' are demonstrated for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at a 20 K higher operating temperature than with previous AIM technology. For MWIR detectors with a 20-mu m pitch, noise equivalent temperature differences of less than 30 mK are obtained up to 170 K. This technology has been transferred to our small pixel pitch high resolution (XGA) MWIR detector with 1024 x 768 pixels at a 10-mu m pitch. Excellent performance at an operating temperature of 160 K is demonstrated.
引用
收藏
页码:5448 / 5457
页数:10
相关论文
共 18 条
[1]  
BRUDER M, 1995, P SOC PHOTO-OPT INS, V2554, P137, DOI 10.1117/12.218181
[2]   Multilevel RTS in Proton Irradiated CMOS Image Sensors Manufactured in a Deep Submicron Technology [J].
Goiffon, V. ;
Hopkinson, G. R. ;
Magnan, P. ;
Bernard, F. ;
Rolland, G. ;
Saint-Pe, O. .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2009, 56 (04) :2132-2141
[3]   MCT-Based LWIR and VLWIR 2D Focal Plane Detector Arrays for Low Dark Current Applications at AIM [J].
Hanna, S. ;
Eich, D. ;
Mahlein, K. -M. ;
Fick, W. ;
Schirmacher, W. ;
Thoet, R. ;
Wendler, J. ;
Figgemeier, H. .
JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (09) :4542-4551
[4]   Large format 15μm pitch XBn detector [J].
Karni, Yoram ;
Avnon, Eran ;
Ben Ezra, Michael ;
Berkowicz, Eyal ;
Cohen, Omer ;
Cohen, Yossef ;
Dobromislin, Roman ;
Hirsh, Itay ;
Klin, Olga ;
Klipstein, Philip ;
Lukomsky, Inna ;
Nitzani, Michal ;
Pivnik, Igor ;
Rozenberg, Omer ;
Shtrichman, Itay ;
Singer, Michael ;
Sulimani, Shay ;
Tuito, Avi ;
Weiss, Eliezer .
INFRARED TECHNOLOGY AND APPLICATIONS XL, 2014, 9070
[5]  
Kinch M.A., 2014, STATE OF THE ART INF
[6]  
Kinch M. A., 2007, Fundamentals of Infrared Detector Materials
[7]   High-Operating Temperature HgCdTe: A Vision for the Near Future [J].
Lee, D. ;
Carmody, M. ;
Piquette, E. ;
Dreiske, P. ;
Chen, A. ;
Yulius, A. ;
Edwall, D. ;
Bhargava, S. ;
Zandian, M. ;
Tennant, W. E. .
JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (09) :4587-4595
[8]   Small pixel pitch MCT IR-modules [J].
Lutz, H. ;
Breiter, R. ;
Eich, D. ;
Figgemeier, H. ;
Fries, P. ;
Rutzinger, S. ;
Wendler, J. .
INFRARED TECHNOLOGY AND APPLICATIONS XLII, 2016, 9819
[9]   Improved high operating temperature MCT MWIR modules [J].
Lutz, H. ;
Breiter, R. ;
Figgemeier, H. ;
Schallenberg, T. ;
Schirmacher, W. ;
Wollrab, R. .
INFRARED TECHNOLOGY AND APPLICATIONS XL, 2014, 9070
[10]   High operating temperature IR-modules with small pitch for SWaP reduction and high performance applications [J].
Lutz, H. ;
Breiter, R. ;
Eich, D. ;
Ruehlich, I. ;
Rutzinger, S. ;
Schallenberg, T. ;
Wendler, J. ;
Wollrab, R. ;
Ziegler, J. .
ELECTRO-OPTICAL AND INFRARED SYSTEMS: TECHNOLOGY AND APPLICATIONS VIII, 2011, 8185