SANS study of unilamellar DMPC vesicles: Fluctuation model of a lipid bilayer

被引:0
|
作者
Kiselev, MA [1 ]
Zemlyanaya, EV
Aswal, VK
机构
[1] Joint Inst Nucl Res, Dubna 141980, Moscow Oblast, Russia
[2] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
关键词
D O I
暂无
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Parameters of a polydisperse population of unilamellar DMPC vesicles are analyzed based on a model of separated form factors. The neutron-scattering length density across the membrane is described using a fluctuation model of a lipid bilayer. The distribution of water molecules in the bilayer is described by a sigmoid function. The results of fitting the experimental data obtained on a SANS-I PSI small-angle spectrometer (Switzerland) are as follows: the average vesicle radius is 272 +/- 0.4 Angstrom, the radius polydispersit is 27%, the membrane thickness is 50.6 +/- 0.8 Angstrom, the thickness of the hydrocarbon-tail region is 21.4 +/- 2.8 Angstrom, the number of water molecules per lipid molecule is 13 1, and the surface area of the DMPC molecule is 59 +/- 2Angstrom(2). The calculated function of water distribution across the membrane directly explains why water molecules easily penetrate the membrane. (C) 2004 MAIK "Nauka/Interperiodica".
引用
收藏
页码:S136 / S141
页数:6
相关论文
共 50 条
  • [21] Incorporation of gold nanoparticles into the bilayer of polydiacetylene unilamellar vesicles
    Andrew Tobias
    William Rooke
    Timothy W. Hanks
    Colloid and Polymer Science, 2019, 297 : 85 - 93
  • [22] Modification of the CHARMM force field for DMPC lipid bilayer
    Hogberg, Carl-Johan
    Nikitin, Alexei M.
    Lyubartsev, Alexander P.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2008, 29 (14) : 2359 - 2369
  • [23] Calcium Enhances Binding of Aβ Monomer to DMPC Lipid Bilayer
    Lockhart, Christopher
    Klimov, Dmitri K.
    BIOPHYSICAL JOURNAL, 2015, 108 (07) : 1807 - 1818
  • [24] The folding kinetics of OmpA into large unilamellar vesicles are of second order and depend on the hydrophobic thickness of the lipid bilayer
    Kleinschmidt, JH
    Tamm, LK
    BIOPHYSICAL JOURNAL, 2000, 78 (01) : 160A - 160A
  • [25] On the Mechanism of Bilayer Separation by Extrusion; or, Why Your Large Unilamellar Vesicles are Not Really Unilamellar
    Scott, Haden L.
    Skinkle, Allison
    Kelley, Elizabeth G.
    Waxham, Neal
    Levental, Ilya
    Heberle, Frederick A.
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 388A - 388A
  • [26] CARRIER AND CHANNEL KINETICS IN UNILAMELLAR LIPID VESICLES
    LOEW, LM
    BENSON, L
    BRIDGE, M
    BIOPHYSICAL JOURNAL, 1984, 45 (02) : A64 - A64
  • [27] Growth kinetics of lipid-based nanodiscs to unilamellar vesicles-A time-resolved small angle neutron scattering (SANS) study
    Mahabir, Suanne
    Small, Darcy
    Li, Ming
    Wan, Wankei
    Kucerka, Norbert
    Littrell, Kenneth
    Katsaras, John
    Nieh, Mu-Ping
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2013, 1828 (03): : 1025 - 1035
  • [28] COCHLEATE LIPID CYLINDERS - FORMATION BY FUSION OF UNILAMELLAR LIPID VESICLES
    PAPAHADJOPOULOS, D
    VAIL, WJ
    JACOBSON, K
    POSTE, G
    BIOCHIMICA ET BIOPHYSICA ACTA, 1975, 394 (03) : 483 - 491
  • [29] Hydrophobic thickness, lipid surface area and polar region hydration in monounsaturated diacylphosphatidylcholine bilayers: SANS study of effects of cholesterol and β-sitosterol in unilamellar vesicles
    Gallova, J.
    Uhrikova, D.
    Kucerka, N.
    Teixeira, J.
    Balgavy, P.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2008, 1778 (11): : 2627 - 2632
  • [30] Water distribution function across the curved lipid bilayer: SANS study
    Kiselev, M. A.
    Zernlyanaya, E. V.
    Ryabova, N. Y.
    Hauss, T.
    Dante, S.
    Lombardo, D.
    CHEMICAL PHYSICS, 2008, 345 (2-3) : 185 - 190