Dissipation-enhanced collapse singularity of a nonlocal fluid of light in a hot atomic vapor

被引:9
作者
Azam, Pierre [1 ]
Fusaro, Adrien [2 ,3 ]
Fontaine, Quentin [4 ]
Garnier, Josselin [5 ]
Bramati, Alberto [4 ]
Picozzi, Antonio [2 ]
Kaiser, Robin [1 ]
Glorieux, Quentin [4 ]
Bienaime, Tom [4 ]
机构
[1] Univ Cote Azur, CNRS, Inst Phys Nice, F-06560 Valbonne, France
[2] Univ Bourgogne Franche Comte, CNRS, Lab Interdisciplinaire Carnot Bourgogne, F-21078 Dijon, France
[3] CEA, DAM, DIF, F-91297 Arpajon, France
[4] PSL Res Univ, ENS, Coll France, Lab Kastler Brossel,Sorbonne Univ,CNRS, F-75005 Paris, France
[5] Ecole Polytech, Inst Polytech Paris, CMAP, F-91128 Palaiseau, France
基金
欧盟地平线“2020”;
关键词
LONG-RANGE INTERACTIONS; SHOCK-WAVES; SOLITONS; PLASMA; GENERATION; PULSES;
D O I
10.1103/PhysRevA.104.013515
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the out-of-equilibrium dynamics of a two-dimensional paraxial fluid of light using a near-resonant laser propagating through a hot atomic vapor. We observe a double shock-collapse instability: a shock (gradient catastrophe) for the velocity as well as an annular (ring-shaped) collapse singularity for the density. We find experimental evidence that this instability results from the combined effect of the nonlocal photon-photon interaction and the linear photon losses. The theoretical analysis based on the method of characteristics reveals the main result that dissipation (photon losses) is responsible for an unexpected enhancement of the collapse instability. Detailed analytical modeling makes it possible to evaluate the nonlocality range of the interaction. The nonlocality is controlled by adjusting the atomic vapor temperature and is seen to increase dramatically when the atomic density becomes much larger than one atom per cubic wavelength. Interestingly, such a large range of the nonlocal photon-photon interaction is observed in an atomic vapor here, but its microscopic origin is currently unknown.
引用
收藏
页数:8
相关论文
共 75 条
[1]   Blast waves in a paraxial fluid of light [J].
Abuzarli, M. ;
Bienaime, T. ;
Giacobino, E. ;
Bramati, A. ;
Glorieux, Q. .
EPL, 2021, 134 (02)
[2]   Time-resolved detection of relative-intensity squeezed nanosecond pulses in an 87Rb vapor [J].
Agha, Imad H. ;
Giarmatzi, Christina ;
Glorieux, Quentin ;
Coudreau, Thomas ;
Grangier, Philippe ;
Messin, Gaetan .
NEW JOURNAL OF PHYSICS, 2011, 13
[3]   Theoretical progress in many-body physics with ultracold dipolar gases [J].
Baranov, M. A. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 464 (03) :71-111
[4]   ON CNOIDAL WAVES AND BORES [J].
BENJAMIN, TB ;
LIGHTHILL, MJ .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1954, 224 (1159) :448-460
[5]   Quantitative Analysis of Shock Wave Dynamics in a Fluid of Light [J].
Bienaime, T. ;
Isoard, M. ;
Fontaine, Q. ;
Bramati, A. ;
Kamchatnov, A. M. ;
Glorieux, Q. ;
Pavloff, N. .
PHYSICAL REVIEW LETTERS, 2021, 126 (18)
[6]   Dispersive hydrodynamics: Preface [J].
Biondini, G. ;
El, G. A. ;
Hoefer, M. A. ;
Miller, P. D. .
PHYSICA D-NONLINEAR PHENOMENA, 2016, 333 :1-5
[7]   Gamow vectors explain the shock profile [J].
Braidotti, Maria Chiara ;
Gentilini, Silvia ;
Conti, Claudio .
OPTICS EXPRESS, 2016, 24 (19) :21963-21970
[8]   Formation of Dispersive Shock Waves by Merging and Splitting Bose-Einstein Condensates [J].
Chang, J. J. ;
Engels, P. ;
Hoefer, M. A. .
PHYSICAL REVIEW LETTERS, 2008, 101 (17)
[9]   Observation of a Gradient Catastrophe Generating Solitons [J].
Conti, Claudio ;
Fratalocchi, Andrea ;
Peccianti, Marco ;
Ruocco, Giancarlo ;
Trillo, Stefano .
PHYSICAL REVIEW LETTERS, 2009, 102 (08)
[10]   Observation of quantum shock waves created with ultra-compressed slow light pulses in a Bose-Einstein condensate [J].
Dutton, Z ;
Budde, M ;
Slowe, C ;
Hau, LV .
SCIENCE, 2001, 293 (5530) :663-668