Possible description of domain walls in two-dimensional spin glasses by stochastic Loewner evolutions

被引:56
作者
Bernard, Denis
Le Doussal, Pierre
Middleton, A. Alan
机构
[1] Ecole Normale Super, Phys Theor Lab, CNRS, F-75005 Paris, France
[2] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
来源
PHYSICAL REVIEW B | 2007年 / 76卷 / 02期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevB.76.020403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Domain walls for spin glasses are believed to be scale invariant; a stronger symmetry, conformal invariance, has the potential to hold. The statistics of zero-temperature Ising spin glass domain walls in two dimensions are used to test the hypothesis that these domain walls are described by a Schramm-Loewner evolution SLE kappa. Multiple tests are consistent with SLE kappa, where kappa=2.32+/-0.08. Both conformal invariance and the domain Markov property are tested. The latter does not hold in small systems, but detailed numerical evidence suggests that it holds in the continuum limit.
引用
收藏
页数:4
相关论文
共 25 条
  • [1] Conformal invariance and stochastic loewner evolution processes in two-dimensional Ising spin glasses
    Amoruso, C.
    Hartmann, A. K.
    Hastings, M. B.
    Moore, M. A.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (26)
  • [2] [Anonymous], ARXIVCONDMAT9911024
  • [3] ON THE COMPUTATIONAL-COMPLEXITY OF ISING SPIN-GLASS MODELS
    BARAHONA, F
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (10): : 3241 - 3253
  • [4] Dipolar stochastic Loewner evolutions
    Bauer, M
    Bernard, D
    Houdayer, J
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2005, : 1 - 18
  • [5] 2D growth processes: SLE and Loewner chains
    Bauer, Michel
    Bernard, Denis
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 432 (3-4): : 115 - 221
  • [6] Conformal invariance in two-dimensional turbulence
    Bernard, D
    Boffetta, G
    Celani, A
    Falkovich, G
    [J]. NATURE PHYSICS, 2006, 2 (02) : 124 - 128
  • [7] BERNARD D, ARXIVCONDMAT9509137
  • [8] BRAY AJ, 1986, HEIDELBERG C GLASSY
  • [9] CAPPELLI A, 2002, STAT FIELDS THEORIES
  • [10] SLE for theoretical physicists
    Cardy, J
    [J]. ANNALS OF PHYSICS, 2005, 318 (01) : 81 - 118