Subprojective Banach spaces

被引:17
|
作者
Oikhberg, T. [1 ]
Spinu, E. [2 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
关键词
Banach space; Complemented subspace; Tensor product; Space of operators; OPERATORS; SUBSPACES; LATTICES;
D O I
10.1016/j.jmaa.2014.11.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Banach space X is called subprojective if any of its infinite dimensional subspaces contains a further infinite dimensional subspace complemented in X. This paper is devoted to systematic study of subprojectivity. We examine the stability of subprojectivity of Banach spaces under various operations, such as direct or twisted sums, tensor products, and forming spaces of operators. Along the way, we obtain new classes of subprojective spaces. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:613 / 635
页数:23
相关论文
共 50 条
  • [21] On Uniformly Finitely Extensible Banach spaces
    Castillo, Jesus M. F.
    Ferenczi, Valentin
    Moreno, Yolanda
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (02) : 670 - 686
  • [22] On a second numerical index for Banach spaces
    Kim, Sun Kwang
    Lee, Han Ju
    Martin, Miguel
    Meri, Javier
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (02) : 1003 - 1051
  • [23] Products and factors of Banach function spaces
    Schep, Anton R.
    POSITIVITY, 2010, 14 (02) : 301 - 319
  • [24] Embeddings of Banach spaces into Banach lattices and the Gordon-Lewis property
    Casazza, PG
    Nielsen, NJ
    POSITIVITY, 2001, 5 (04) : 297 - 321
  • [25] On Zippin's Embedding Theorem of Banach spaces into Banach spaces with bases
    Schlumprecht, Th.
    ADVANCES IN MATHEMATICS, 2015, 274 : 833 - 880
  • [26] Are Banach spaces monadic?
    Rosicky, J.
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (01) : 268 - 274
  • [27] λ-Limited Sets in Banach and Dual Banach Spaces
    Philip, Aleena
    Gupta, Manjul
    Baweja, Deepika
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2024, 55 (03):
  • [28] Frames in Banach spaces
    Terekhin, P. A.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2010, 44 (03) : 199 - 208
  • [29] Frames in Banach spaces
    P. A. Terekhin
    Functional Analysis and Its Applications, 2010, 44 : 199 - 208
  • [30] Mean ergodicity on Banach lattices and Banach spaces
    Eduard Yu. Emel’yanov
    Manfred P.H. Wolff
    Archiv der Mathematik, 1999, 72 : 214 - 218