Subprojective Banach spaces

被引:17
作者
Oikhberg, T. [1 ]
Spinu, E. [2 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
关键词
Banach space; Complemented subspace; Tensor product; Space of operators; OPERATORS; SUBSPACES; LATTICES;
D O I
10.1016/j.jmaa.2014.11.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Banach space X is called subprojective if any of its infinite dimensional subspaces contains a further infinite dimensional subspace complemented in X. This paper is devoted to systematic study of subprojectivity. We examine the stability of subprojectivity of Banach spaces under various operations, such as direct or twisted sums, tensor products, and forming spaces of operators. Along the way, we obtain new classes of subprojective spaces. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:613 / 635
页数:23
相关论文
共 43 条
[1]  
Aiena P., 2004, FREDHOLM LOCAL SPECT
[2]   GOOD l2-SUBSPACES OF Lp, p > 2 [J].
Alspach, Dale E. .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2009, 3 (02) :49-54
[3]  
[Anonymous], 1977, C ALGEBRAS
[4]  
[Anonymous], 1991, Banach Lattices
[6]  
ARAZY J, 1975, COMPOS MATH, V30, P81
[7]  
Bessaga C., 1958, Stud. Math, V17, P151, DOI [10.4064/sm-17-2-151-164, DOI 10.4064/SM-17-2-151-164]
[8]   The 2-concavification of a Banach lattice equals the diagonal of the Fremlin tensor square [J].
Bu, Qingying ;
Buskes, Gerard ;
Popov, Alexey I. ;
Tcaciuc, Adi ;
Troitsky, Vladimir G. .
POSITIVITY, 2013, 17 (02) :283-298
[9]  
DEFANT A, 1993, TENSOR NORMS OPERATO
[10]  
Diestel J., 2008, AMSNS AMS Non-Series Title Series