A Tunable Scaffold of Microtubular Graphite for 3D Cell Growth

被引:23
作者
Lamprecht, Constanze [1 ,4 ]
Taale, Mohammadreza [1 ]
Paulowicz, Ingo [1 ]
Westerhaus, Hannes [1 ]
Grabosch, Carsten [1 ]
Schuchardt, Arnim [1 ]
Mecklenburg, Matthias [2 ]
Boettner, Martina [3 ]
Lucius, Ralph [3 ]
Schulte, Karl [2 ]
Adelung, Rainer [1 ]
Selhuber-Unkel, Christine [1 ]
机构
[1] Univ Kiel, Inst Mat Sci, D-24143 Kiel, Germany
[2] Hamburg Univ Technol, Inst Polymers & Composites, D-21073 Hamburg, Germany
[3] Univ Kiel, Inst Anat, Olshaussenstr 40, D-24118 Kiel, Germany
[4] Johannes Kepler Univ Linz, Inst Biophys, A-4020 Linz, Austria
基金
欧洲研究理事会;
关键词
aerographite; tissue engineering; 3D scaffold; cyclic RGD; fibroblasts; POLY(ETHYLENE GLYCOL); DRUG-DELIVERY; BIOMATERIALS; FABRICATION; NETWORKS; MICROENVIRONMENTS; ADHESION;
D O I
10.1021/acsami.6b00778
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Aerographite (AG) is a novel carbon-based material that exists as a self-supportive 3D network of interconnected hollow microtubules. It can be synthesized in a variety of architectures tailored by the growth conditions. This flexibility in creating structures presents interesting bioengineering possibilities such as the generation of an artificial extracellular matrix. Here we have explored the feasibility and potential of AG as a scaffold for 3D cell growth employing cyclic RGD (cRGD) peptides coupled to poly(ethylene glycol) (PEG) conjugated phospholipids for surface functionalization to promote specific adhesion of fibroblast cells. Successful growth and invasion of the bulk material was followed over a period of 4 days.
引用
收藏
页码:14980 / 14985
页数:6
相关论文
共 32 条
[21]   De novo reconstitution of a functional mammalian urinary bladder by tissue engineering [J].
Oberpenning, F ;
Meng, J ;
Yoo, JJ ;
Atala, A .
NATURE BIOTECHNOLOGY, 1999, 17 (02) :149-155
[22]   The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue [J].
Park, KI ;
Teng, YD ;
Snyder, EY .
NATURE BIOTECHNOLOGY, 2002, 20 (11) :1111-1117
[23]   Naturally and synthetic smart composite biomaterials for tissue regeneration [J].
Perez, Roman A. ;
Won, Jong-Eun ;
Knowles, Jonathan C. ;
Kim, Hae-Won .
ADVANCED DRUG DELIVERY REVIEWS, 2013, 65 (04) :471-496
[24]   Biomimetic approaches to modulate cellular adhesion in biomaterials: A review [J].
Rahmany, Maria B. ;
Van Dyke, Mark .
ACTA BIOMATERIALIA, 2013, 9 (03) :5431-5437
[25]   Three-dimensional Aerographite-GaN hybrid networks: Single step fabrication of porous and mechanically flexible materials for multifunctional applications [J].
Schuchardt, Arnim ;
Braniste, Tudor ;
Mishra, Yogendra K. ;
Deng, Mao ;
Mecklenburg, Matthias ;
Stevens-Kalceff, Marion A. ;
Raevschi, Simion ;
Schulte, Karl ;
Kienle, Lorenz ;
Adelung, Rainer ;
Tiginyanu, Ion .
SCIENTIFIC REPORTS, 2015, 5
[26]   Gradient biomaterials for soft-to-hard interface tissue engineering [J].
Seidi, Azadeh ;
Ramalingam, Murugan ;
Elloumi-Hannachi, Imen ;
Ostrovidov, Serge ;
Khademhosseini, Ali .
ACTA BIOMATERIALIA, 2011, 7 (04) :1441-1451
[27]   3D free-standing porous scaffolds made of graphene oxide as substrates for neural cell growth [J].
Serrano, M. C. ;
Patino, J. ;
Garcia-Rama, C. ;
Ferrer, M. L. ;
Fierro, J. L. G. ;
Tamayo, A. ;
Collazos-Castro, J. E. ;
del Monte, F. ;
Gutierrez, M. C. .
JOURNAL OF MATERIALS CHEMISTRY B, 2014, 2 (34) :5698-5706
[28]   Electro spinning: Applications in drug delivery and tissue engineering [J].
Sill, Travis J. ;
von Recum, Horst A. .
BIOMATERIALS, 2008, 29 (13) :1989-2006
[29]   Function and interactions of integrins [J].
van der Flier, A ;
Sonnenberg, A .
CELL AND TISSUE RESEARCH, 2001, 305 (03) :285-298
[30]   A high poly(ethylene glycol) density on graphene nanomaterials reduces the detachment of lipid-poly(ethylene glycol) and macrophage uptake [J].
Yang, Mei ;
Wada, Momoyo ;
Zhang, Minfang ;
Kostarelos, Kostas ;
Yuge, Ryota ;
Iijima, Sumio ;
Masuda, Mitsutoshi ;
Yudasaka, Masako .
ACTA BIOMATERIALIA, 2013, 9 (01) :4744-4753