Quantum phase transitions in bosonic heteronuclear pairing Hamiltonians

被引:6
|
作者
Hohenadler, M. [1 ]
Silver, A. O. [2 ]
Bhaseen, M. J. [2 ]
Simons, B. D. [2 ]
机构
[1] Univ Wurzburg, Inst Theoret Phys & Astrophys, Wurzburg, Germany
[2] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
基金
英国工程与自然科学研究理事会;
关键词
ISING-MODEL; INSULATOR;
D O I
10.1103/PhysRevA.82.013639
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We explore the phase diagram of two-component bosons with Feshbach resonant pairing interactions in an optical lattice. It has been shown in previous work to exhibit a rich variety of phases and phase transitions, including a paradigmatic Ising quantum phase transition within the second Mott lobe. We discuss the evolution of the phase diagram with system parameters and relate this to the predictions of Landau theory. We extend our exact diagonalization studies of the one-dimensional bosonic Hamiltonian and confirm additional Ising critical exponents for the longitudinal and transverse magnetic susceptibilities within the second Mott lobe. The numerical results for the ground-state energy and transverse magnetization are in good agreement with exact solutions of the Ising model in the thermodynamic limit. We also provide details of the low-energy spectrum, as well as density fluctuations and superfluid fractions in the grand canonical ensemble.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Effective action approach for quantum phase transitions in bosonic lattices
    Bradlyn, Barry
    dos Santos, Francisco Ednilson A.
    Pelster, Axel
    PHYSICAL REVIEW A, 2009, 79 (01):
  • [2] Computing Quantum Phase Transitions
    Vojta, Thomas
    REVIEWS IN COMPUTATIONAL CHEMISTRY, VOL 26, 2009, 26 : 167 - 221
  • [3] Magnetic properties of the second Mott lobe in pairing Hamiltonians
    Bhaseen, M. J.
    Ejima, S.
    Hohenadler, M.
    Silver, A. O.
    Essler, F. H. L.
    Fehske, H.
    Simons, B. D.
    PHYSICAL REVIEW A, 2011, 84 (02):
  • [4] Quantum phase diagram for Bosonic triangular superlattice system
    Wang, Tao
    Tang, Gui-Xin
    Hou, Chun-Feng
    EUROPEAN PHYSICAL JOURNAL D, 2015, 69 (02)
  • [5] FIDELITY APPROACH TO QUANTUM PHASE TRANSITIONS
    Gu, Shi-Jian
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (23): : 4371 - 4458
  • [6] Quantum phase transitions in an array of coupled nanocavity quantum dots
    Grochol, Michal
    PHYSICAL REVIEW B, 2009, 79 (20)
  • [7] Coherence susceptibility as a probe of quantum phase transitions
    Chen, Jin-Jun
    Cui, Jian
    Zhang, Yu-Ran
    Fan, Heng
    PHYSICAL REVIEW A, 2016, 94 (02)
  • [8] Quantum Correlations in Spin Chains at Finite Temperatures and Quantum Phase Transitions
    Werlang, T. G.
    Trippe, C.
    Ribeiro, G. A. P.
    Rigolin, Gustavo
    PHYSICAL REVIEW LETTERS, 2010, 105 (09)
  • [9] Role of the tuning parameter at magnetic quantum phase transitions
    Fritsch, V.
    Stockert, O.
    Huang, C. -L.
    Bagrets, N.
    Kittler, W.
    Taubenheim, C.
    Pilawa, B.
    Woitschach, S.
    Huesges, Z.
    Lucas, S.
    Schneidewind, A.
    Grube, K.
    v Loehneysen, H.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (06) : 997 - 1019
  • [10] Theory and phenomenology for a variety of classical and quantum phase transitions
    March, N. H.
    Zhang, Z. D.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2013, 51 (07) : 1694 - 1711