Peak quasisymmetric functions and Eulerian enumeration

被引:46
|
作者
Billera, LJ [1 ]
Hsiao, SK [1 ]
van Willigenburg, S [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
关键词
flag f vector; peak algebra; cd-index; g-theorem; function; quasi symmetric function; Eulerian posets;
D O I
10.1016/S0001-8708(02)00067-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Via duality of Hopf algebras, there is a direct association between peak quasisymmetric functions and enumeration of chains in Eulerian posets. We study this association explicitly, showing that the notion of cd-index, long studied in the context of convex polytopes and Eulerian posets, arises as the dual basis to a natural basis of peak quasisymmetric functions introduced by Stembridge. Thus Eulerian posets having a nonnegative cd-index (for example, face lattices of convex polytopes) correspond to peak quasisymmetric functions having a nonnegative representation in terms of this basis. We diagonalize the operator that associates the basis of descent sets for all quasisymmetric functions to that of peak sets for the algebra of peak functions, and study the g-polynomial for Eulerian posets as an algebra homomorphism. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:248 / 276
页数:29
相关论文
共 35 条
  • [1] Random walks on quasisymmetric functions
    Hersh, Patricia
    Hsiao, Samuel K.
    ADVANCES IN MATHEMATICS, 2009, 222 (03) : 782 - 808
  • [2] Colored Posets and Colored Quasisymmetric Functions
    Hsiao, Samuel K.
    Petersen, T. Kyle
    ANNALS OF COMBINATORICS, 2010, 14 (02) : 251 - 289
  • [3] Colored Posets and Colored Quasisymmetric Functions
    Samuel K. Hsiao
    T. Kyle Petersen
    Annals of Combinatorics, 2010, 14 : 251 - 289
  • [4] QUASISYMMETRIC FUNCTIONS FOR NESTOHEDRA
    Grujic, Vladimir
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (04) : 2570 - 2585
  • [5] Quasisymmetric Schur functions
    Haglund, J.
    Luoto, K.
    Mason, S.
    van Willigenburg, S.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (02) : 463 - 490
  • [6] Quasisymmetric functions distinguishing trees
    Aval, Jean-Christophe
    Djenabou, Karimatou
    Mcnamara, Peter R. W.
    ALGEBRAIC COMBINATORICS, 2023, 6 (03): : 595 - 614
  • [7] Divided symmetrization and quasisymmetric functions
    Nadeau, Philippe
    Tewari, Vasu
    SELECTA MATHEMATICA-NEW SERIES, 2021, 27 (04):
  • [8] Divided symmetrization and quasisymmetric functions
    Philippe Nadeau
    Vasu Tewari
    Selecta Mathematica, 2021, 27
  • [9] Symmetric Functions, Noncommutative Symmetric Functions, and Quasisymmetric Functions
    Michiel Hazewinkel
    Acta Applicandae Mathematica, 2003, 75 : 55 - 83
  • [10] Symmetric functions, noncommutative symmetric functions and quasisymmetric functions II
    Hazewinkel, M
    ACTA APPLICANDAE MATHEMATICAE, 2005, 85 (1-3) : 319 - 340