An Introduction to Variational Autoencoders

被引:1284
|
作者
Kingma, Diederik P. [1 ]
Welling, Max [2 ,3 ]
机构
[1] Google, Mountain View, CA 94043 USA
[2] Univ Amsterdam, Amsterdam, Netherlands
[3] Qualcomm, San Diego, CA USA
来源
FOUNDATIONS AND TRENDS IN MACHINE LEARNING | 2019年 / 12卷 / 04期
关键词
GRADIENT; LIKELIHOOD; ALGORITHMS; MODELS;
D O I
10.1561/2200000056
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variational autoencoders provide a principled framework for learning deep latent-variable models and corresponding inference models. In this work, we provide an introduction to variational autoencoders and some important extensions.
引用
收藏
页码:4 / 89
页数:86
相关论文
共 50 条
  • [21] Convolutional Autoencoders for Human Motion Infilling
    Kaufmann, Manuel
    Aksan, Emre
    Song, Jie
    Pece, Fabrizio
    Ziegler, Remo
    Hilliges, Otmar
    2020 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2020), 2020, : 918 - 927
  • [22] On the Robustness to Misspecification of α-posteriors and Their Variational Approximations
    Medina, Marco Avella
    Olea, Jose Luis Montiel
    Rush, Cynthia
    Velez, Amilcar
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [23] Variational Inference for Stochastic Differential Equations
    Opper, Manfred
    ANNALEN DER PHYSIK, 2019, 531 (03)
  • [24] Correspondence Autoencoders for Cross-Modal Retrieval
    Feng, Fangxiang
    Wang, Xiaojie
    Li, Ruifan
    Ahmad, Ibrar
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2015, 12 (01)
  • [25] Advancing Physically Informed Autoencoders for DTM Generation
    Naeini, Amin Alizadeh
    Sheikholeslami, Mohammad Moein
    Sohn, Gunho
    REMOTE SENSING, 2024, 16 (11)
  • [26] Deforming Autoencoders: Unsupervised Disentangling of Shape and Appearance
    Shu, Zhixin
    Sahasrabudhe, Mihir
    Guler, Riza Alp
    Samaras, Dimitris
    Paragios, Nikos
    Kokkinos, Iasonas
    COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 664 - 680
  • [27] Effort estimation via text classification and autoencoders
    Soares, Rodrigo G. F.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [28] Analyzing business process anomalies using autoencoders
    Nolle, Timo
    Luettgen, Stefan
    Seeliger, Alexander
    Muehlhaeuser, Max
    MACHINE LEARNING, 2018, 107 (11) : 1875 - 1893
  • [29] Learning landscape features from streamflow with autoencoders
    Bassi, Alberto
    Hoge, Marvin
    Mira, Antonietta
    Fenicia, Fabrizio
    Albert, Carlo
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2024, 28 (22) : 4971 - 4988
  • [30] Variational chemical data assimilation with approximate adjoints
    Singh, Kumaresh
    Sandu, Adrian
    COMPUTERS & GEOSCIENCES, 2012, 40 : 10 - 18