An Introduction to Variational Autoencoders

被引:1487
作者
Kingma, Diederik P. [1 ]
Welling, Max [2 ,3 ]
机构
[1] Google, Mountain View, CA 94043 USA
[2] Univ Amsterdam, Amsterdam, Netherlands
[3] Qualcomm, San Diego, CA USA
来源
FOUNDATIONS AND TRENDS IN MACHINE LEARNING | 2019年 / 12卷 / 04期
关键词
GRADIENT; LIKELIHOOD; ALGORITHMS; MODELS;
D O I
10.1561/2200000056
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Variational autoencoders provide a principled framework for learning deep latent-variable models and corresponding inference models. In this work, we provide an introduction to variational autoencoders and some important extensions.
引用
收藏
页码:4 / 89
页数:86
相关论文
共 139 条
[101]  
Miao YS, 2016, PR MACH LEARN RES, V48
[102]  
Mnih Andriy, 2016, INT C MACHINE LEARNI, P2188
[103]  
Molchanov D, 2017, PR MACH LEARN RES, V70
[104]  
Naesseth CA, 2017, PR MACH LEARN RES, V54, P489
[105]  
Neal RM, 2011, CH CRC HANDB MOD STA, P113
[106]  
Neal RM, 1998, NATO ADV SCI I D-BEH, V89, P355
[107]  
Papamakarios G, 2017, ADV NEUR IN, V30
[108]  
Pritzel Alexander, 2017, P MACHINE LEARNING R, P2827
[109]  
Ranganath R., 2016, PMLR, P324
[110]  
Ranganath R, 2014, JMLR WORKSH CONF PRO, V33, P814