Impact of imidazolium-based ionic liquids on the structure and stability of lysozyme

被引:41
|
作者
Satish, Lakkoji [1 ]
Rana, Shubhasmin [1 ]
Arakha, Manoranjan [2 ]
Rout, Lipeeka [1 ]
Ekka, Basanti [1 ]
Jha, Suman [2 ]
Dash, Priyabrat [1 ]
Sahoo, Harekrushna [1 ]
机构
[1] NIT Rourkela, Dept Chem, Rourkela, Odisha, India
[2] NIT Rourkela, Dept Life Sci, Rourkela, Odisha, India
关键词
Fluorescence spectroscopy; ionic liquids; lysozyme; protein stability; BOVINE SERUM-ALBUMIN; EGG-WHITE LYSOZYME; PROTEIN DENATURATION; THERMAL-STABILITY; AQUEOUS-SOLUTIONS; FLUORESCENCE; BINDING; STABILIZATION; SURFACTANTS; CHLORIDE;
D O I
10.1080/00387010.2016.1167089
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Various types of water-miscible aprotic ionic liquids (ILs) with different cations (1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-octyl-3-methylimidazolium) and anions (ethylsulfate and chloride) were used as co-solvents to investigate the stability of lysozyme. Different techniques such as fluorescence, thermal absorption, and circular dichroism (CD) spectroscopy have been used for the study. Fluorescence results reveal that the addition of ILs (1-ethyl-3-methylimidazolium ethyl sulfate and 1-ethyl-3-methylimidazolium) increases the hydrophobicity around the tryptophan environment in lysozyme. CD analysis and temperature-dependent studies were done to investigate the stability of the protein. From the CD analysis, it was observed that the ILs keep the native structure of protein intact. Thermal denaturation studies depicted that the melting temperature of the protein increased in the presence of ILs (1-ethyl-3-methylimidazolium ethyl sulfate and 1-ethyl-3-methylimidazolium), which indicates the stabilization of the protein.
引用
收藏
页码:383 / 390
页数:8
相关论文
共 50 条
  • [21] Analysis of the driving force that rule the stability of lysozyme in alkylammonium-based ionic liquids
    Bisht, Meena
    Kumar, Awanish
    Venkatesu, Pannuru
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2015, 81 : 1074 - 1081
  • [22] Thermal stability of imidazolium-based ionic liquids investigated by TG and FTIR techniques
    Feng, Wen-quan
    Lu, Yi-heng
    Chen, Ying
    Lu, Yu-wei
    Yang, Tao
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2016, 125 (01) : 143 - 154
  • [23] The stability of insulin in the presence of short alkyl chain imidazolium-based ionic liquids
    Kumar, Awanish
    Venkatesu, Pannuru
    RSC ADVANCES, 2014, 4 (09): : 4487 - 4499
  • [24] Catalytic wet peroxide oxidation of imidazolium-based ionic liquids: Catalyst stability and biodegradability enhancement
    Mena, Ismael F.
    Diaz, Elena
    Perez-Farias, Citlali
    Stolte, Stefan
    Moreno-Andrade, Ivan
    Rodriguez, Juan J.
    Mohedano, Angel F.
    CHEMICAL ENGINEERING JOURNAL, 2019, 376
  • [25] Actinide and lanthanide speciation in imidazolium-based ionic liquids
    Billard, I.
    Gaillard, C.
    RADIOCHIMICA ACTA, 2009, 97 (07) : 355 - 359
  • [26] The thermochemistry of solvation of imidazolium-based ionic liquids in benzene
    Khachatrian, Artashes A.
    Solomonov, Boris N.
    PHYSICS AND CHEMISTRY OF LIQUIDS, 2020, 58 (01) : 70 - 76
  • [27] Extraction of glabridin using imidazolium-based ionic liquids
    Li, Xueqin
    Guo, Ruili
    Zhang, Xiaopeng
    Li, Xiaoyue
    SEPARATION AND PURIFICATION TECHNOLOGY, 2012, 88 : 146 - 150
  • [28] Aggregation Behavior of imidazolium-based ionic liquids in water
    Zhang, Hucheng
    Liang, Huijun
    Wang, Jianji
    Li, Kun
    ZEITSCHRIFT FUR PHYSIKALISCHE CHEMIE-INTERNATIONAL JOURNAL OF RESEARCH IN PHYSICAL CHEMISTRY & CHEMICAL PHYSICS, 2007, 221 (08): : 1061 - 1074
  • [29] Halogenation of imidazolium-based ionic liquids: Thermodynamic perspective
    Chaban, Vitaly
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2016, 98 : 81 - 85
  • [30] Modelling shear thinning of Imidazolium-based ionic liquids
    Yamada, Tatsuya
    Bonnaud, Patrick A.
    Tejima, Syogo
    Fujita, Jun-ichi
    CHEMICAL PHYSICS LETTERS, 2023, 816