Estimating Outcome Probabilities of Quantum Circuits Using Quasiprobabilities

被引:133
作者
Pashayan, Hakop [1 ]
Wallman, Joel J. [2 ,3 ]
Bartlett, Stephen D. [1 ]
机构
[1] Univ Sydney, Sch Phys, Ctr Engn Quantum Syst, Sydney, NSW 2006, Australia
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Appl Math, Waterloo, ON N2L 3G1, Canada
关键词
D O I
10.1103/PhysRevLett.115.070501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a method for estimating the probabilities of outcomes of a quantum circuit using Monte Carlo sampling techniques applied to a quasiprobability representation. Our estimate converges to the true quantum probability at a rate determined by the total negativity in the circuit, using a measure of negativity based on the 1-norm of the quasiprobability. If the negativity grows at most polynomially in the size of the circuit, our estimator converges efficiently. These results highlight the role of negativity as a measure of nonclassical resources in quantum computation.
引用
收藏
页数:5
相关论文
共 19 条
  • [1] Improved simulation of stabilizer circuits
    Aaronson, S
    Gottesman, D
    [J]. PHYSICAL REVIEW A, 2004, 70 (05): : 052328 - 1
  • [2] Aaronson S., 2011, P 43 ANN ACM S THEOR, P333, DOI 10.1145/1993636.1993682
  • [3] Efficient classical simulation of continuous variable quantum information processes
    Bartlett, SD
    Sanders, BC
    Braunstein, SL
    Nemoto, K
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (09) : 4 - 979044
  • [4] Classicality in discrete Wigner functions
    Cormick, C
    Galvao, EF
    Gottesman, D
    Paz, JP
    Pittenger, AO
    [J]. PHYSICAL REVIEW A, 2006, 73 (01):
  • [5] Wigner Function Negativity and Contextuality in Quantum Computation on Rebits
    Delfosse, Nicolas
    Guerin, Philippe Allard
    Bian, Jacob
    Raussendorf, Robert
    [J]. PHYSICAL REVIEW X, 2015, 5 (02):
  • [6] Quasi-probability representations of quantum theory with applications to quantum information science
    Ferrie, Christopher
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2011, 74 (11)
  • [7] Framed Hilbert space: hanging the quasi-probability pictures of quantum theory
    Ferrie, Christopher
    Emerson, Joseph
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11
  • [8] Gardiner C., 2004, Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics, V56
  • [9] Hudson's theorem for finite-dimensional quantum systems
    Gross, D.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2006, 47 (12)
  • [10] Gurvits L, 2005, LECT NOTES COMPUT SC, V3618, P447