Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data

被引:696
作者
Boeva, Valentina [1 ,2 ,3 ]
Popova, Tatiana [1 ,4 ]
Bleakley, Kevin [5 ]
Chiche, Pierre [1 ,2 ,3 ]
Cappo, Julie [1 ,4 ]
Schleiermacher, Gudrun [1 ,4 ]
Janoueix-Lerosey, Isabelle [1 ,4 ]
Delattre, Olivier [1 ,4 ]
Barillot, Emmanuel [1 ,2 ,3 ]
机构
[1] Inst Curie, F-75248 Paris, France
[2] INSERM, U900, F-75248 Paris, France
[3] Mines ParisTech, F-77300 Fontainebleau, France
[4] INSERM, U830, F-75248 Paris, France
[5] INRIA Saclay, F-91893 Orsay, France
关键词
CANCER;
D O I
10.1093/bioinformatics/btr670
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
More and more cancer studies use next-generation sequencing (NGS) data to detect various types of genomic variation. However, even when researchers have such data at hand, single-nucleotide polymorphism arrays have been considered necessary to assess copy number alterations and especially loss of heterozygosity (LOH). Here, we present the tool Control-FREEC that enables automatic calculation of copy number and allelic content profiles from NGS data, and consequently predicts regions of genomic alteration such as gains, losses and LOH. Taking as input aligned reads, Control-FREEC constructs copy number and B-allele frequency profiles. The profiles are then normalized, segmented and analyzed in order to assign genotype status (copy number and allelic content) to each genomic region. When a matched normal sample is provided, Control-FREEC discriminates somatic from germline events. Control-FREEC is able to analyze overdiploid tumor samples and samples contaminated by normal cells. Low mappability regions can be excluded from the analysis using provided mappability tracks. Availability: C++ source code is available at: http://bioinfo.curie.fr/projects/freec/
引用
收藏
页码:423 / 425
页数:3
相关论文
共 8 条
  • [1] [Anonymous], 2008, Advances in neural information processing systems
  • [2] Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization
    Boeva, Valentina
    Zinovyev, Andrei
    Bleakley, Kevin
    Vert, Jean-Philippe
    Janoueix-Lerosey, Isabelle
    Delattre, Olivier
    Barillot, Emmanuel
    [J]. BIOINFORMATICS, 2011, 27 (02) : 268 - 269
  • [3] High-risk neuroblastoma tumors with 11q-deletion display a poor prognostic, chromosome instability phenotype with later onset
    Caren, Helena
    Kryh, Hanna
    Nethander, Maria
    Sjoberg, Rose-Marie
    Trager, Catarina
    Nilsson, Staffan
    Abrahamsson, Jonas
    Kogner, Per
    Martinsson, Tommy
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (09) : 4323 - 4328
  • [4] Hallmarks of Cancer: The Next Generation
    Hanahan, Douglas
    Weinberg, Robert A.
    [J]. CELL, 2011, 144 (05) : 646 - 674
  • [5] Genome Alteration Print (GAP): a tool to visualize and mine complex cancer genomic profiles obtained by SNP arrays
    Popova, Tatiana
    Manie, Elodie
    Stoppa-Lyonnet, Dominique
    Rigaill, Guillem
    Barillot, Emmanuel
    Stern, Marc Henri
    [J]. GENOME BIOLOGY, 2009, 10 (11):
  • [6] Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV
    Sathirapongsasuti, Jarupon Fah
    Lee, Hane
    Horst, Basil A. J.
    Brunner, Georg
    Cochran, Alistair J.
    Binder, Scott
    Quackenbush, John
    Nelson, Stanley F.
    [J]. BIOINFORMATICS, 2011, 27 (19) : 2648 - 2654
  • [7] dbSNP: the NCBI database of genetic variation
    Sherry, ST
    Ward, MH
    Kholodov, M
    Baker, J
    Phan, L
    Smigielski, EM
    Sirotkin, K
    [J]. NUCLEIC ACIDS RESEARCH, 2001, 29 (01) : 308 - 311
  • [8] Suzuki S, 2000, CANCER RES, V60, P5382