The x-and-y-axes travelling salesman problem

被引:5
作者
Cela, Eranda [3 ]
Deineko, Vladimir [1 ]
Woeginger, Gerhard J. [2 ]
机构
[1] Warwick Business Sch, Coventry CV4 7AL, W Midlands, England
[2] TU Eindhoven, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
[3] Graz Univ Technol, Inst Optimierung & Diskrete Math, A-8010 Graz, Austria
基金
英国工程与自然科学研究理事会;
关键词
Combinatorial optimization; Polynomial-time algorithm; Computational complexity; Euclidean travelling salesman problem; TSP; TOURS; PLANE;
D O I
10.1016/j.ejor.2012.06.036
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The x-and-y-axes travelling salesman problem forms a special case of the Euclidean TSP, where all cities are situated on the x-axis and on the y-axis of an orthogonal coordinate system of the Euclidean plane. By carefully analyzing the underlying combinatorial and geometric structures, we show that this problem can be solved in polynomial time. The running time of the resulting algorithm is quadratic in the number of cities. (C) 2012 Elsevier By. All rights reserved.
引用
收藏
页码:333 / 345
页数:13
相关论文
共 19 条
[1]   Euclidean TSP between two nested convex obstacles [J].
Abrahamson, J ;
Shokoufandeh, A ;
Winter, P .
INFORMATION PROCESSING LETTERS, 2005, 95 (02) :370-375
[2]   A review of TSP based approaches for flowshop scheduling [J].
Bagchi, TP ;
Gupta, JND ;
Sriskandarajah, C .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 169 (03) :816-854
[3]   Well-solvable special cases of the traveling salesman problem: A survey [J].
Burkard, RE ;
Deineko, VG ;
Van Dal, R ;
Van der Veen, JAA ;
Woeginger, GJ .
SIAM REVIEW, 1998, 40 (03) :496-546
[4]   EFFICIENT SPECIAL CASE ALGORITHMS FOR THE N-LINE PLANAR TRAVELING SALESMAN PROBLEM [J].
CUTLER, M .
NETWORKS, 1980, 10 (03) :183-195
[5]   THE CONVEX-HULL-AND-LINE TRAVELING SALESMAN PROBLEM - A SOLVABLE CASE [J].
DEINEKO, VG ;
VANDAL, R ;
ROTE, G .
INFORMATION PROCESSING LETTERS, 1994, 51 (03) :141-148
[6]   The Convex-hull-and-k-line travelling salesman problem [J].
Deineko, VG ;
Woeginger, GJ .
INFORMATION PROCESSING LETTERS, 1996, 59 (06) :295-301
[7]   TESTING THE NECKLACE CONDITION FOR SHORTEST TOURS AND OPTIMAL FACTORS IN THE PLANE [J].
EDELSBRUNNER, H ;
ROTE, G ;
WELZL, E .
THEORETICAL COMPUTER SCIENCE, 1989, 66 (02) :157-180
[8]   THE TRAVELING-SALESMAN PROBLEM [J].
FLOOD, MM .
OPERATIONS RESEARCH, 1956, 4 (01) :61-75
[9]   Using total monotonicity for two optimization problems on the plane [J].
Garcia, A ;
Tejel, J .
INFORMATION PROCESSING LETTERS, 1996, 60 (01) :13-17
[10]  
Gilmore P., 1985, Well-solved special cases, P87