High β effects on cosmic ray streaming in galaxy clusters

被引:25
作者
Wiener, Joshua [1 ,2 ]
Zweibel, Ellen G. [2 ,3 ]
Oh, S. Peng [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Univ Wisconsin, Dept Astron, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
关键词
MHD; cosmic rays; galaxies: clusters: general; gamma-rays: galaxies: clusters; radio continuum: general; GIANT RADIO HALOES; COMA CLUSTER; MAGNETIC-FIELDS; SCALING RELATIONS; TURBULENCE; ACCELERATION; ELECTRONS; EMISSION; PHYSICS; ORIGIN;
D O I
10.1093/mnras/stx2603
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Diffuse, extended radio emission in galaxy clusters, commonly referred to as radio haloes, indicate the presence of high energy cosmic ray (CR) electrons and cluster-wide magnetic fields. We can predict from theory the expected surface brightness of a radio halo, given magnetic field and CR density profiles. Previous studies have shown that the nature of CR transport can radically effect the expected radio halo emission from clusters (Wiener, Oh & Guo 2013). Reasonable levels of magnetohydrodynamic (MHD) wave damping can lead to significant CR streaming speeds. But a careful treatment of MHD waves in a high beta plasma, as expected in cluster environments, reveals damping rates may be enhanced by a factor of beta(1/2). This leads to faster CR streaming and lower surface brightnesses than without this effect. In this work, we re-examine the simplified, 1D Coma cluster simulations (with radial magnetic fields) of Wiener et al. (2013) and discuss observable consequences of this high beta damping. Future work is required to study this effect in more realistic simulations.
引用
收藏
页码:3095 / 3103
页数:9
相关论文
共 50 条
[31]   Cosmic ray transport in galaxy clusters: implications for radio halos, gamma-ray signatures, and cool core heating [J].
Ensslin, T. ;
Pfrommer, C. ;
Miniati, F. ;
Subramanian, K. .
ASTRONOMY & ASTROPHYSICS, 2011, 527
[32]   Galactic winds driven by cosmic ray streaming [J].
Uhlig, M. ;
Pfrommer, C. ;
Sharma, M. ;
Nath, B. B. ;
Ensslin, T. A. ;
Springel, V. .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 423 (03) :2374-2396
[33]   Supernovae in clusters of massive stars as cosmic ray pevatrons [J].
Bykov, A. M. ;
Ellison, D. C. ;
Gladilin, P. E. ;
Osipov, S. M. .
NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS, 2018, 297 :183-193
[34]   Cosmic Ray Streaming in the Turbulent Interstellar Medium [J].
Xu, Siyao ;
Lazarian, Alex .
ASTROPHYSICAL JOURNAL, 2022, 927 (01)
[35]   THERMAL INSTABILITY WITH ANISOTROPIC THERMAL CONDUCTION AND ADIABATIC COSMIC RAYS: IMPLICATIONS FOR COLD FILAMENTS IN GALAXY CLUSTERS [J].
Sharma, Prateek ;
Parrish, Ian J. ;
Quataert, Eliot .
ASTROPHYSICAL JOURNAL, 2010, 720 (01) :652-665
[36]   Cosmic rays and non-thermal emission in simulated galaxies - III. Probing cosmic-ray calorimetry with radio spectra and the FIR-radio correlation [J].
Werhahn, Maria ;
Pfrommer, Christoph ;
Girichidis, Philipp .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 508 (03) :4072-4095
[37]   Damping of Alfven Waves in MHD Turbulence and Implications for Cosmic Ray Streaming Instability and Galactic Winds [J].
Lazarian, Alex ;
Xu, Siyao .
FRONTIERS IN PHYSICS, 2022, 10
[38]   Probing the cosmic-ray content of galaxy clusters by stacking Fermi-LAT count maps [J].
Huber, B. ;
Tchernin, C. ;
Eckert, D. ;
Farnier, C. ;
Manalaysay, A. ;
Straumann, U. ;
Walter, R. .
ASTRONOMY & ASTROPHYSICS, 2013, 560
[39]   NON-THERMAL EMISSION FROM GALAXY CLUSTERS AND FUTURE OBSERVATIONS WITH THE FERMI GAMMA-RAY TELESCOPE AND LOFAR [J].
Brunetti, G. .
MAGNETIC FIELDS IN THE UNIVERSE II: FROM LABORATORY AND STARS TO THE PRIMORDIAL UNIVERSE, 2009, 36 :201-208
[40]   Galaxy clusters as probes of cosmic isotropy [J].
Migkas, Konstantinos .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2025, 383 (2290)