Adaptive ViBe background model for vehicle detection

被引:0
作者
Pan, Chengyi [1 ,2 ]
Zhu, Zhou [3 ]
Jiang, Liangwei [4 ]
Wang, Min [4 ]
Lu, Xiaobo [1 ,2 ]
机构
[1] Southeast Univ, Sch Automat, Nanjing 210096, Jiangsu, Peoples R China
[2] Minist Educ, Key Lab Measurement & Control Complex Syst Engn, Nanjing 210096, Jiangsu, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Jiangsu, Peoples R China
[4] Minist Publ Secur Rd Traff Safety, Key Lab, Wuxi 214151, Peoples R China
来源
2017 IEEE 2ND ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC) | 2017年
基金
中国国家自然科学基金;
关键词
background; ViBe; adaptive; error function; evahiation conditions; vehicle detection;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Background extraction is an important step in vehicle detection. In the actual scene, change of illumination will lead to a tremendous background change. It is necessary to update the background model reasonably and effectively as the illumination changes. In order to solve this problem, this paper proposes an adaptive ViBe background model. Firstly, two kinds of vehicle detection errors and their corresponding error function are defined. Then, according to the range of these two kinds of errors, a set of reasonable evaluation conditions are determined to adjust the unreasonable threshold value, which guarantees the adaptive updation of the background model. Experiments in real scenarios show that the adaptive ViBe background model has better vehicle detection accuracy than the mixed Gaussian model, the codebook model and the fixed threshold ViBe model.
引用
收藏
页码:1301 / 1305
页数:5
相关论文
共 7 条
[1]   ViBe: A Universal Background Subtraction Algorithm for Video Sequences [J].
Barnich, Olivier ;
Van Droogenbroeck, Marc .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (06) :1709-1724
[2]   VIBE: A POWERFUL RANDOM TECHNIQUE TO ESTIMATE THE BACKGROUND IN VIDEO SEQUENCES [J].
Barnich, Olivier ;
Van Droogenbroeck, Marc .
2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, :945-948
[3]  
Elhabian Shireen Y, 2008, RPCS, V1, P32, DOI DOI 10.2174/1874479610801010032
[4]   Singular value decomposition and local near neighbors for face recognition under varying illumination [J].
Hu, Changhui ;
Lu, Xiaobo ;
Ye, Mengjun ;
Zeng, Weili .
PATTERN RECOGNITION, 2017, 64 :60-83
[5]  
Khan B., 2013, LIFE SCI J, V10, P337
[6]  
Wu M, 2010, INT J ELECT COMMUNIC, P739, DOI DOI 10.1016/J.AEUE.2009.05.004
[7]   Efficient adaptive density estimation per image pixel for the task of background subtraction [J].
Zivkovic, Z ;
van der Heijden, F .
PATTERN RECOGNITION LETTERS, 2006, 27 (07) :773-780