Raman 2D Peak Line Shape in Epigraphene on SiC

被引:5
作者
Kunc, Jan [1 ]
Rejhon, Martin [1 ]
机构
[1] Charles Univ Prague, Inst Phys, Fac Math & Phys, Ke Karlovu 5, CZ-12116 Prague 2, Czech Republic
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 07期
关键词
epitaxial graphene; silicon carbide; Raman spectroscopy; 2D peak line shape; G peak; charge density; strain; EPITAXIAL GRAPHENE; LARGE-AREA; SPECTROSCOPY; GROWTH; PHONON;
D O I
10.3390/app10072354
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We measured a 2D peak line shape of epitaxial graphene grown on SiC in high vacuum, argon and graphene prepared by hydrogen intercalation from the so called buffer layer on a silicon face of SiC. We fitted the 2D peaks by Lorentzian and Voigt line shapes. The detailed analysis revealed that the Voigt line shape describes the 2D peak line shape better. We have determined the contribution of the homogeneous and inhomogeneous broadening. The homogeneous broadening is attributed to the intrinsic lifetime. Although the inhomogeneous broadening can be attributed to the spatial variations of the charge density, strain and overgrown graphene ribbons on the sub-micrometer length scales, we found dominant contribution of the strain fluctuations. The quasi free-standing graphene grown by hydrogen intercalation is shown to have the narrowest linewidth due to both homogeneous and inhomogeneous broadening.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Growth and characterization of sidewall graphene nanoribbons
    Baringhaus, J.
    Aprojanz, J.
    Wiegand, J.
    Laube, D.
    Halbauer, M.
    Huebner, J.
    Oestreich, M.
    Tegenkamp, C.
    [J]. APPLIED PHYSICS LETTERS, 2015, 106 (04)
  • [2] Calculation of the Raman G peak intensity in monolayer graphene: role of Ward identities
    Basko, D. M.
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11
  • [3] Berger C., 2017, ARXIV170400374
  • [4] Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies
    Cancado, L. G.
    Jorio, A.
    Martins Ferreira, E. H.
    Stavale, F.
    Achete, C. A.
    Capaz, R. B.
    Moutinho, M. V. O.
    Lombardo, A.
    Kulmala, T. S.
    Ferrari, A. C.
    [J]. NANO LETTERS, 2011, 11 (08) : 3190 - 3196
  • [5] General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy
    Cançado, LG
    Takai, K
    Enoki, T
    Endo, M
    Kim, YA
    Mizusaki, H
    Jorio, A
    Coelho, LN
    Magalhaes-Paniago, R
    Pimenta, MA
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (16)
  • [6] Raman spectra and electron-phonon coupling in disordered graphene with gate-tunable doping
    Childres, Isaac
    Jauregui, Luis A.
    Chen, Yong P.
    [J]. JOURNAL OF APPLIED PHYSICS, 2014, 116 (23)
  • [7] Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor
    Das, A.
    Pisana, S.
    Chakraborty, B.
    Piscanec, S.
    Saha, S. K.
    Waghmare, U. V.
    Novoselov, K. S.
    Krishnamurthy, H. R.
    Geim, A. K.
    Ferrari, A. C.
    Sood, A. K.
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (04) : 210 - 215
  • [8] Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide
    de Heer, Walt A.
    Berger, Claire
    Ruan, Ming
    Sprinkle, Mike
    Li, Xuebin
    Hu, Yike
    Zhang, Baiqian
    Hankinson, John
    Conrad, Edward
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (41) : 16900 - 16905
  • [9] Intrinsic stacking domains in graphene on silicon carbide: A pathway for intercalation
    de Jong, T. A.
    Krasovskii, E. E.
    Ott, C.
    Tromp, R. M.
    van der Molen, S. J.
    Jobst, J.
    [J]. PHYSICAL REVIEW MATERIALS, 2018, 2 (10):
  • [10] Defect characterization in graphene and carbon nanotubes using Raman spectroscopy
    Dresselhaus, M. S.
    Jorio, A.
    Souza Filho, A. G.
    Saito, R.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1932): : 5355 - 5377