Khasminskii-Whitham averaging for randomly perturbed KdV equation

被引:32
|
作者
Kuksin, Sergei B. [1 ,2 ]
Piatnitski, Andrey L. [3 ,4 ]
机构
[1] Ecole Polytech, CMLS, F-91128 Palaiseau, France
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Narvik Univ Coll, N-8505 Narvik, Norway
[4] RAS, PN Lebedev Phys Inst, Moscow 119991, Russia
来源
关键词
D O I
10.1016/j.matpur.2007.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the damped-driven KdV equation: [GRAPHICS] where 0 < v < 1 and the random process eta is smooth in x and white in t. For any periodic function u(x) let I = (I-1,I-2, . . .) be the vector, formed by the KdV integrals of motion, calculated for the potential u (x). We prove that if u (t, x) is a solution of the equation above, then for 0 <= t less than or similar to v(-1) and v -> 0 the vector I(t) = (I-1(u(t,.)), I-2(u(t,.)), . . . ) satisfies the (Whitham) averaged equation. (c) 2007 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:400 / 428
页数:29
相关论文
共 50 条
  • [41] Dynamical behavior in the perturbed compound KdV-Burgers equation
    Yu, Jun
    Zhang, Weijun
    Gao, Xiaoming
    CHAOS SOLITONS & FRACTALS, 2007, 33 (04) : 1307 - 1313
  • [42] Averaging Method in the Problem of Optimal control for a Perturbed Parabolic Equation
    O. V. Kapustyan
    O. M. Stanzhytskyi
    I. D. Fartushny
    Ukrainian Mathematical Journal, 2022, 74 : 1113 - 1120
  • [43] AVERAGING METHOD IN THE PROBLEM OF OPTIMAL CONTROLFOR A PERTURBED PARABOLIC EQUATION
    Kapustyan, O. V.
    Stanzhytskyi, O. M.
    Fartushny, I. D.
    UKRAINIAN MATHEMATICAL JOURNAL, 2022, 74 (07) : 1113 - 1120
  • [44] AVERAGING A SINGULARLY PERTURBED EQUATION WITH RAPIDLY OSCILLATING COEFFICIENTS IN A LAYER
    PYATNITSKII, AL
    MATHEMATICS OF THE USSR-SBORNIK, 1983, 121 (1-2): : 19 - 40
  • [45] Stratonovich-Khasminskii averaging principle for multiscale random Korteweg-de Vries-Burgers equation
    Gao, Peng
    NONLINEARITY, 2023, 36 (11) : 6124 - 6151
  • [46] Existence of Solitary Waves and Periodic Waves to a Perturbed Generalized KdV Equation
    Yan, Weifang
    Liu, Zhengrong
    Liang, Yong
    MATHEMATICAL MODELLING AND ANALYSIS, 2014, 19 (04) : 537 - 555
  • [47] Obtaining new soliton solutions of the fractional generalized perturbed KdV equation
    Bayrakci, Ugur
    Demiray, Seyma Tuluce
    Yildirim, Huseyin
    PHYSICA SCRIPTA, 2024, 99 (12)
  • [48] Travelling wave solutions for a singularly perturbed Burgers-KdV equation
    M. B. A. Mansour
    Pramana, 2009, 73 : 799 - 806
  • [49] Verifications of the physical validation of the solutions of the perturbed KdV equation for convective fluids
    Abourabia, Aly Maher
    Soliman, Ibrahim Mohammed
    EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (04):
  • [50] Approximate Symmetry Analysis and Approximate Conservation Laws of Perturbed KdV Equation
    Bai, Yu-Shan
    Zhang, Qi
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018