Diagnosis of COVID-19 from Chest X-Ray Images Using Wavelets-Based Depthwise Convolution Network

被引:60
作者
Singh, Krishna Kant [1 ]
Singh, Akansha [2 ]
机构
[1] KIET Grp Inst, Dept ECE, Ghaziabad 201206, India
[2] Amity Univ Uttar Pradesh, Dept CSE, ASET, Noida 201310, India
关键词
coronavirus; COVID-19; deep learning; convolution neural network; X-Ray images;
D O I
10.26599/BDMA.2020.9020012
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Coronavirus disease 2019 also known as COVID-19 has become a pandemic. The disease is caused by a beta coronavirus called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The severity of the disease can be understood by the massive number of deaths and affected patients globally. If the diagnosis is fast-paced, the disease can be controlled in a better manner. Laboratory tests are available for diagnosis, but they are bounded by available testing kits and time. The use of radiological examinations that comprise Computed Tomography (CT) can be used for the diagnosis of the disease. Specifically, chest X-Ray images can be analysed to identify the presence of COVID-19 in a patient. In this paper, an automated method for the diagnosis of COVID-19 from the chest X-Ray images is proposed. The method presents an improved depthwise convolution neural network for analysing the chest X-Ray images. Wavelet decomposition is applied to integrate multiresolution analysis in the network. The frequency sub-bands obtained from the input images are fed in the network for identifying the disease. The network is designed to predict the class of the input image as normal, viral pneumonia, and COVID-19. The predicted output from the model is combined with Grad-CAM visualization for diagnosis. A comparative study with the existing methods is also performed. The metrics like accuracy, sensitivity, and F1-measure are calculated for performance evaluation. The performance of the proposed method is better than the existing methodologies and thus can be used for the effective diagnosis of the disease.
引用
收藏
页码:84 / 93
页数:10
相关论文
共 25 条
[1]  
Abbas A, 2020, Arxiv, DOI arXiv:2003.13815
[2]  
Agarap AF, 2018, arXiv, DOI DOI 10.48550/ARXIV.1803.08375
[3]   Comparison of classification accuracy using Cohen's Weighted Kappa [J].
Ben-David, Arie .
EXPERT SYSTEMS WITH APPLICATIONS, 2008, 34 (02) :825-832
[4]   A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster [J].
Chan, Jasper Fuk-Woo ;
Yuan, Shuofeng ;
Kok, Kin-Hang ;
To, Kelvin Kai-Wang ;
Chu, Hin ;
Yang, Jin ;
Xing, Fanfan ;
Liu, Jieling ;
Yip, Cyril Chik-Yan ;
Poon, Rosana Wing-Shan ;
Tsoi, Hoi-Wah ;
Lo, Simon Kam-Fai ;
Chan, Kwok-Hung ;
Poon, Vincent Kwok-Man ;
Chan, Wan-Mui ;
Ip, Jonathan Daniel ;
Cai, Jian-Piao ;
Cheng, Vincent Chi-Chung ;
Chen, Honglin ;
Hui, Christopher Kim-Ming ;
Yuen, Kwok-Yung .
LANCET, 2020, 395 (10223) :514-523
[5]   Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study [J].
Chen, Nanshan ;
Zhou, Min ;
Dong, Xuan ;
Qu, Jieming ;
Gong, Fengyun ;
Han, Yang ;
Qiu, Yang ;
Wang, Jingli ;
Liu, Ying ;
Wei, Yuan ;
Xia, Jia'an ;
Yu, Ting ;
Zhang, Xinxin ;
Zhang, Li .
LANCET, 2020, 395 (10223) :507-513
[6]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[7]  
Gozes O, 2020, Arxiv, DOI [arXiv:2003.05037, DOI 10.48550/ARXIV.2003.05037]
[8]  
Kermany Daniel, 2018, Mendeley Data, V2
[9]   Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning [J].
Kermany, Daniel S. ;
Goldbaum, Michael ;
Cai, Wenjia ;
Valentim, Carolina C. S. ;
Liang, Huiying ;
Baxter, Sally L. ;
McKeown, Alex ;
Yang, Ge ;
Wu, Xiaokang ;
Yan, Fangbing ;
Dong, Justin ;
Prasadha, Made K. ;
Pei, Jacqueline ;
Ting, Magdalena ;
Zhu, Jie ;
Li, Christina ;
Hewett, Sierra ;
Dong, Jason ;
Ziyar, Ian ;
Shi, Alexander ;
Zhang, Runze ;
Zheng, Lianghong ;
Hou, Rui ;
Shi, William ;
Fu, Xin ;
Duan, Yaou ;
Huu, Viet A. N. ;
Wen, Cindy ;
Zhang, Edward D. ;
Zhang, Charlotte L. ;
Li, Oulan ;
Wang, Xiaobo ;
Singer, Michael A. ;
Sun, Xiaodong ;
Xu, Jie ;
Tafreshi, Ali ;
Lewis, M. Anthony ;
Xia, Huimin ;
Zhang, Kang .
CELL, 2018, 172 (05) :1122-+
[10]   Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia [J].
Li, Qun ;
Guan, Xuhua ;
Wu, Peng ;
Wang, Xiaoye ;
Zhou, Lei ;
Tong, Yeqing ;
Ren, Ruiqi ;
Leung, Kathy S. M. ;
Lau, Eric H. Y. ;
Wong, Jessica Y. ;
Xing, Xuesen ;
Xiang, Nijuan ;
Wu, Yang ;
Li, Chao ;
Chen, Qi ;
Li, Dan ;
Liu, Tian ;
Zhao, Jing ;
Liu, Man ;
Tu, Wenxiao ;
Chen, Chuding ;
Jin, Lianmei ;
Yang, Rui ;
Wang, Qi ;
Zhou, Suhua ;
Wang, Rui ;
Liu, Hui ;
Luo, Yinbo ;
Liu, Yuan ;
Shao, Ge ;
Li, Huan ;
Tao, Zhongfa ;
Yang, Yang ;
Deng, Zhiqiang ;
Liu, Boxi ;
Ma, Zhitao ;
Zhang, Yanping ;
Shi, Guoqing ;
Lam, Tommy T. Y. ;
Wu, Joseph T. ;
Gao, George F. ;
Cowling, Benjamin J. ;
Yang, Bo ;
Leung, Gabriel M. ;
Feng, Zijian .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (13) :1199-1207