Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation

被引:64
|
作者
Doret, S. Charles [1 ]
Amini, Jason M. [1 ]
Wright, Kenneth [1 ]
Volin, Curtis [1 ]
Killian, Tyler [1 ]
Ozakin, Arkadas [1 ]
Denison, Douglas [1 ]
Hayden, Harley [1 ]
Pai, C-S [1 ]
Slusher, Richart E. [1 ]
Harter, Alexa W. [1 ]
机构
[1] Georgia Tech Res Inst, Atlanta, GA 30332 USA
来源
NEW JOURNAL OF PHYSICS | 2012年 / 14卷
关键词
QUANTUM; ARCHITECTURE;
D O I
10.1088/1367-2630/14/7/073012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent advances in quantum information processing with trapped ions have demonstrated the need for new ion trap architectures capable of holding and manipulating chains of many (>10) ions. Here we present the design and detailed characterization of a new linear trap, microfabricated with scalable complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited to this challenge. Forty-four individually controlled dc electrodes provide the many degrees of freedom required to construct anharmonic potential wells, shuttle ions, merge and split ion chains, precisely tune secular mode frequencies, and adjust the orientation of trap axes. Microfabricated capacitors on dc electrodes suppress radio-frequency pickup and excess micromotion, while a top-level ground layer simplifies modeling of electric fields and protects trap structures underneath. A localized aperture in the substrate provides access to the trapping region from an oven below, permitting deterministic loading of particular isotopic/elemental sequences via species-selective photoionization. The shapes of the aperture and radio-frequency electrodes are optimized to minimize perturbation of the trapping pseudopotential. Laboratory experiments verify simulated potentials and characterize trapping lifetimes, stray electric fields, and ion heating rates, while measurement and cancellation of spatially-varying stray electric fields permits the formation of nearly-equally spaced ion chains.
引用
收藏
页数:16
相关论文
共 42 条
  • [1] Dynamic compensation of stray electric fields in an ion trap using machine learning and adaptive algorithm
    Ghadimi, Moji
    Zappacosta, Alexander
    Scarabel, Jordan
    Shimizu, Kenji
    Streed, Erik W.
    Lobino, Mirko
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [2] Dynamic compensation of stray electric fields in an ion trap using machine learning and adaptive algorithm
    Moji Ghadimi
    Alexander Zappacosta
    Jordan Scarabel
    Kenji Shimizu
    Erik W. Streed
    Mirko Lobino
    Scientific Reports, 12
  • [3] Long-term drifts of stray electric fields in a Paul trap
    Haerter, A.
    Kruekow, A.
    Brunner, A.
    Denschlag, J. Hecker
    APPLIED PHYSICS B-LASERS AND OPTICS, 2014, 114 (1-2): : 275 - 281
  • [4] Long-term drifts of stray electric fields in a Paul trap
    A. Härter
    A. Krükow
    A. Brunner
    J. Hecker Denschlag
    Applied Physics B, 2014, 114 : 275 - 281
  • [5] Measurement of Ion Motion Caused by Laser-Induced Stray Charges on Microfabricated Ion Trap Chip Surfaces
    Jung, Changhyun
    Lee, Woojun
    Jeong, Junho
    Kim, Taehyun
    Cho, Dong-Il
    2021 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2021) / QUANTUM WEEK 2021, 2021, : 431 - 432
  • [6] Controlling stray electric fields on an atom chip for experiments on Rydberg atoms
    Davtyan, D.
    Machluf, S.
    Soudijn, M. L.
    Naber, J. B.
    van Druten, N. J.
    van den Heuvell, H. B. van Linden
    Spreeuw, R. J. C.
    PHYSICAL REVIEW A, 2018, 97 (02)
  • [7] A microfabricated ion trap chip with a sloped loading slot to minimize exposing trapped ions to stray charges
    Jung, Changhyun
    Lee, Woojun
    Jeong, Junho
    Lee, Minjae
    Park, Yunjae
    Kim, Taehyun
    Cho, Dong-Il Dan
    QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (04)
  • [8] Monolithic microfabricated ion trap chip design for scaleable quantum processors
    Brownnutt, M.
    Wilpers, G.
    Gill, P.
    Thompson, R. C.
    Sinclair, A. G.
    NEW JOURNAL OF PHYSICS, 2006, 8
  • [9] Influence of static electric fields on an optical ion trap
    Schneider, Christian
    Enderlein, Martin
    Huber, Thomas
    Duerr, Stephan
    Schaetz, Tobias
    PHYSICAL REVIEW A, 2012, 85 (01):
  • [10] Design and simulation of a wire quadrupole ion trap for ion trapping and cooling
    Li, Ze-Kai
    Zhou, Yijie
    Dong, Changwu
    Hou, Gao-Lei
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2024, 37 (02) : 137 - 146