Truncated Nonlinear Interferometry for Quantum-Enhanced Atomic Force Microscopy
被引:40
|
作者:
Pooser, R. C.
论文数: 0引用数: 0
h-index: 0
机构:
Oak Ridge Natl Lab, POB 2009, Oak Ridge, TN 37831 USAOak Ridge Natl Lab, POB 2009, Oak Ridge, TN 37831 USA
Pooser, R. C.
[1
]
Savino, N.
论文数: 0引用数: 0
h-index: 0
机构:
Oak Ridge Natl Lab, POB 2009, Oak Ridge, TN 37831 USA
Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USAOak Ridge Natl Lab, POB 2009, Oak Ridge, TN 37831 USA
Savino, N.
[1
,2
]
Batson, E.
论文数: 0引用数: 0
h-index: 0
机构:
Oak Ridge Natl Lab, POB 2009, Oak Ridge, TN 37831 USA
MIT, Dept Phys, Cambridge, MA 02139 USAOak Ridge Natl Lab, POB 2009, Oak Ridge, TN 37831 USA
Batson, E.
[1
,3
]
Beckey, J. L.
论文数: 0引用数: 0
h-index: 0
机构:
Oak Ridge Natl Lab, POB 2009, Oak Ridge, TN 37831 USA
Univ Colorado, NIST, JILA, Boulder, CO 80309 USAOak Ridge Natl Lab, POB 2009, Oak Ridge, TN 37831 USA
Beckey, J. L.
[1
,4
]
Garcia, J.
论文数: 0引用数: 0
h-index: 0
机构:
Oak Ridge Natl Lab, POB 2009, Oak Ridge, TN 37831 USAOak Ridge Natl Lab, POB 2009, Oak Ridge, TN 37831 USA
Garcia, J.
[1
]
Lawrie, B. J.
论文数: 0引用数: 0
h-index: 0
机构:
Oak Ridge Natl Lab, POB 2009, Oak Ridge, TN 37831 USAOak Ridge Natl Lab, POB 2009, Oak Ridge, TN 37831 USA
Lawrie, B. J.
[1
]
机构:
[1] Oak Ridge Natl Lab, POB 2009, Oak Ridge, TN 37831 USA
[2] Tulane Univ, Dept Phys & Engn Phys, New Orleans, LA 70118 USA
[3] MIT, Dept Phys, Cambridge, MA 02139 USA
[4] Univ Colorado, NIST, JILA, Boulder, CO 80309 USA
Nonlinear interferometers that replace beam splitters in Mach-Zehnder interferometers with nonlinear amplifiers for quantum-enhanced phase measurements have drawn increasing interest in recent years, but practical quantum sensors based on nonlinear interferometry remain an outstanding challenge. Here, we demonstrate the first practical application of nonlinear interferometry by measuring the displacement of an atomic force microscope microcantilever with quantum noise reduction of up to 3 dB below the standard quantum limit, corresponding to a quantum-enhanced measurement of beam displacement of 1.7 fm/root Hz. Further, we minimize photon backaction noise while taking advantage of quantum noise reduction by transducing the cantilever displacement signal with a weak squeezed state while using dual homodyne detection with a higher power local oscillator. This approach may enable quantum-enhanced broadband, high-speed scanning probe microscopy.