On One Approach of Solving Sentiment Analysis Task for Kazakh and Russian Languages Using Deep Learning

被引:9
作者
Sakenovich, Narynov Sergazy [1 ]
Zharmagambetov, Arman Serikuly [1 ]
机构
[1] Alem Res LLP, Off 13, Dostyk Ave 132, Alma Ata 050051, Kazakhstan
来源
COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2016, PT II | 2016年 / 9876卷
关键词
NLP; Sentiment analysis; Deep learning; Machine learning; Text classification;
D O I
10.1007/978-3-319-45246-3_51
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The given research paper describes modern approaches of solving the task of sentiment analysis of the news articles in Kazakh and Russian languages by using deep recurrent neural networks. Particularly, we used Long-Short Term Memory (LSTM) in order to consider long term dependencies of the whole text. Thereby, research shows that good results can be achieved even without knowing linguistic features of particular language. Here we are going to use word embedding (word2vec, GloVes) as the main feature in our machine learning algorithms. The main idea of word embedding is the representations of words with the help of vectors in such manner that semantic relationships between words preserved as basic linear algebra operations.
引用
收藏
页码:537 / 545
页数:9
相关论文
共 16 条
[1]  
[Anonymous], 2004, COLING 2004 P 20 INT
[2]  
Caropreso MF, 2001, TEXT DATABASES AND DOCUMENT MANAGEMENT: THEORY AND PRACTICE, P78
[3]  
Chetviorkin I., 2012, INT C DIAL 2012 COMP, P1
[4]  
Furnkranz J., 1998, Working Notes of the AAAIICML Workshop on Learning for Text Categorization, P5
[5]  
Go A, 2009, PROCESSING, V150
[6]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[7]  
Joachims Thorsten, 2005, P 10 EUR C MACH LEAR, P137, DOI DOI 10.1007/BFB0026683
[8]  
Liu B., 2012, SYNTH LECT HUM LANG, V5, P1, DOI [10.2200/S00416ED1V01Y201204HLT016, DOI 10.2200/S00416ED1V01Y201204HLT016]
[9]  
Maas A., 2011, P 49 ANN M ASS COMP, P142
[10]  
Mikolov T, 2013, P INT C LEARN REPR, P1