Theoretical simulation of the closed currents near non-uniformly strongly heated surface of tungsten due to thermo-emf

被引:3
作者
Popov, V. A. [1 ,2 ]
Arakcheev, A. S. [1 ,3 ,4 ]
Kandaurov, I. V. [1 ]
Kasatov, A. A. [1 ,2 ]
Kurkuchekov, V. V. [1 ]
Trunev, Yu. A. [1 ]
Vasilyev, A. A. [1 ]
Vyacheslavov, L. N. [1 ]
机构
[1] Russian Acad Sci BINP SB RAS, Budker Inst Nucl Phys, Siberian Branch, Novosibirk 630090, Russia
[2] Novosibirsk State Univ, Novosibirk 630090, Russia
[3] Novosibirsk State Tech Univ, Novosibirk 630087, Russia
[4] Russian Acad Sci, Synchrot Radiat Facil SKIF, Boreskov Inst Catalysis, Siberian Branch, Novosibirk 630090, Russia
基金
俄罗斯基础研究基金会;
关键词
PLASMA;
D O I
10.1063/5.0078087
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A problem of surface melting under the impact of plasmas is one of the most important in the development of future magnetic confinement fusion reactors. The expected high heat loads can lead to melting of tungsten chosen as the material of a divertor and the first wall of ITER. The tungsten melt can move under the action of forces and quickly deform a surface. This article shows that at high temperatures, a tungsten vapor can be considered as a conductive material with conductivity high enough to be taken into account during simulation of current through a sample. We describe the mechanism of current generation by the thermo-emf due to non-uniform heating of the vapor/condensed substance interface without external sources of charges. Even without direct contact with the external plasma, the density of this current is high enough to cause noticeable movement of the melt in an external magnetic field. Simulation shows that the melt moving observed at BETA may be caused not by a current of an electron beam but by non-uniformity of heating and can be reproduced by any other similar heat source in the external magnetic field.
引用
收藏
页数:8
相关论文
共 23 条
  • [1] Two-dimensional numerical simulation of tungsten melting in exposure to pulsed electron beam
    Arakcheev, A. S.
    Apushkinskaya, D. E.
    Kandaurov, I., V
    Kasatov, A. A.
    Kurkuchekov, V. V.
    Lazareva, G. G.
    Maksimova, A. G.
    Popov, V. A.
    Snytnikov, A., V
    Trunev, Yu A.
    Vasilyev, A. A.
    Vyacheslavov, L. N.
    [J]. FUSION ENGINEERING AND DESIGN, 2018, 132 : 13 - 17
  • [2] Askerov B.M., 1994, ELECT TRANSPORT PHEN
  • [3] Electron scattering cross section data for tungsten and beryllium atoms from 0.1 to 5000eV
    Blanco, F.
    Ferreira da Silva, F.
    Limao-Vieira, P.
    Garcia, G.
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2017, 26 (08)
  • [4] Analysis of tungsten melt-layer motion and splashing under tokamak conditions at TEXTOR
    Coenen, J. W.
    Philipps, V.
    Brezinsek, S.
    Bazylev, B.
    Kreter, A.
    Hirai, T.
    Laengner, M.
    Tanabe, T.
    Ueda, Y.
    Samm, U.
    [J]. NUCLEAR FUSION, 2011, 51 (08)
  • [5] ITER material properties handbook
    Davis, JW
    Smith, PD
    [J]. JOURNAL OF NUCLEAR MATERIALS, 1996, 233 : 1593 - 1596
  • [6] Coulomb Logarithm in Nonideal and Degenerate Plasmas
    Filippov, A. V.
    Starostin, A. N.
    Gryaznov, V. K.
    [J]. JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2018, 126 (03) : 430 - 439
  • [7] Fortov V. E., 1999, The Physics of Non-ideal Plasma
  • [8] On thermionic emission from plasma-facing components in tokamak-relevant conditions
    Komm, M.
    Ratynskaia, S.
    Tolias, P.
    Cavalier, J.
    Dejarnac, R.
    Gunn, J. P.
    Podolnik, A.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (09)
  • [9] Radiative heat load distribution on the EU-DEMO first wall due to mitigated disruptions
    Moscheni, M.
    Carr, M.
    Dulla, S.
    Maviglia, F.
    Meakins, A.
    Nallo, G. F.
    Subba, F.
    Zanino, R.
    [J]. NUCLEAR MATERIALS AND ENERGY, 2020, 25
  • [10] CORONAL EQUILIBRIUM OF HIGH-ATOMIC-NUMBER PLASMAS
    MOSHER, D
    [J]. PHYSICAL REVIEW A, 1974, 10 (06): : 2330 - 2335