Benchmarking Advantage and D-Wave 2000Q quantum annealers with exact cover problems

被引:40
作者
Willsch, Dennis [1 ]
Willsch, Madita [1 ,2 ]
Gonzalez Calaza, Carlos D. [1 ]
Jin, Fengping [1 ]
De Raedt, Hans [1 ,3 ]
Svensson, Marika [4 ,5 ]
Michielsen, Kristel [1 ,2 ,6 ]
机构
[1] Forschungszentrum Julich, Inst Adv Simulat, Julich Supercomp Ctr, D-52425 Julich, Germany
[2] AIDAS, D-52425 Julich, Germany
[3] Univ Groningen, Zernike Inst Adv Mat, Nijenborgh 4, NL-9747 AG Groningen, Netherlands
[4] Jeppesen, S-41103 Gothenburg, Sweden
[5] Chalmers Univ Technol, Dept Comp Sci & Engn, SE-41296 Gothenburg, Sweden
[6] Rhein Westfal TH Aachen, D-52056 Aachen, Germany
关键词
Quantum computing; Quantum annealing; Optimization problems; Benchmarking;
D O I
10.1007/s11128-022-03476-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We benchmark the quantum processing units of the largest quantum annealers to date, the 5000+ qubit quantum annealer Advantage and its 2000+ qubit predecessor D-Wave 2000Q, using tail assignment and exact cover problems from aircraft scheduling scenarios. The benchmark set contains small, intermediate, and large problems with both sparsely connected and almost fully connected instances. We find that Advantage outperforms D-Wave 2000Q for almost all problems, with a notable increase in success rate and problem size. In particular, Advantage is also able to solve the largest problems with 120 logical qubits that D-Wave 2000Q cannot solve anymore. Furthermore, problems that can still be solved by D-Wave 2000Q are solved faster by Advantage. We find, however, that D-Wave 2000Q can achieve better success rates for sparsely connected problems that do not require the many new couplers present on Advantage, so improving the connectivity of a quantum annealer does not per se improve its performance.
引用
收藏
页数:22
相关论文
共 71 条
  • [1] Reexamining classical and quantum models for the D-Wave One processor
    Albash, T.
    Ronnow, T. F.
    Troyer, M.
    Lidar, D. A.
    [J]. EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (01) : 111 - 129
  • [2] Consistency tests of classical and quantum models for a quantum annealer
    Albash, Tameem
    Vinci, Walter
    Mishra, Anurag
    Warburton, Paul A.
    Lidar, Daniel A.
    [J]. PHYSICAL REVIEW A, 2015, 91 (04):
  • [3] Alexander C, 2020, ARXIV201101308QUANTP
  • [4] [Anonymous], 2005, The Tail Assignment Problem
  • [5] QUANTUM STOCHASTIC OPTIMIZATION
    APOLLONI, B
    CARVALHO, C
    DEFALCO, D
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1989, 33 (02) : 233 - 244
  • [6] Branch-and-price: Column generation for solving huge integer programs
    Barnhart, C
    Johnson, EL
    Nemhauser, GL
    Savelsbergh, MWP
    Vance, PH
    [J]. OPERATIONS RESEARCH, 1998, 46 (03) : 316 - 329
  • [7] Improved Success Probability with Greater Circuit Depth for the Quantum Approximate Optimization Algorithm
    Bengtsson, Andreas
    Vikstal, Pontus
    Warren, Christopher
    Svensson, Marika
    Gu, Xiu
    Kockum, Anton Frisk
    Krantz, Philip
    Krizan, Christian
    Shiri, Daryoush
    Svensson, Ida-Maria
    Tancredi, Giovanna
    Johansson, Goran
    Delsing, Per
    Ferrini, Giulia
    Bylander, Jonas
    [J]. PHYSICAL REVIEW APPLIED, 2020, 14 (03):
  • [8] Bhatia HS., 2021, COMPUTATIONAL SCI IC
  • [9] Birdal T., ARXIV210107755QUANTP
  • [10] Computational multiqubit tunnelling in programmable quantum annealers
    Boixo, Sergio
    Smelyanskiy, Vadim N.
    Shabani, Alireza
    Isakov, Sergei V.
    Dykman, Mark
    Denchev, Vasil S.
    Amin, Mohammad H.
    Smirnov, Anatoly Yu.
    Mohseni, Masoud
    Neven, Hartmut
    [J]. NATURE COMMUNICATIONS, 2016, 7