Rescaling multipartite entanglement measures for mixed states

被引:21
作者
Viehmann, O. [2 ,3 ]
Eltschka, C. [4 ]
Siewert, J. [1 ,5 ]
机构
[1] Univ Basque Country, Dept Quim Fis, E-48080 Bilbao, Spain
[2] Univ Munich, Dept Phys, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[3] Univ Munich, Ctr NanoSci, D-80333 Munich, Germany
[4] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
[5] Basque Fdn Sci, IKERBASQUE, Bilbao 48011, Spain
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2012年 / 106卷 / 03期
关键词
QUBITS;
D O I
10.1007/s00340-011-4864-x
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A relevant problem regarding entanglement measures is the following: Given an arbitrary mixed state, how does a measure for multipartite entanglement change if general local operations are applied to the state? This question is nontrivial as the normalization of the states has to be taken into account. Here we answer it for pure-state entanglement measures which are invariant under determinant-one local operations and homogeneous in the state coefficients, and their convex-roof extension which quantifies mixed-state entanglement. Our analysis allows us to enlarge the set of mixed states for which these important measures can be calculated exactly. In particular, our results hint at a distinguished role of entanglement measures which have homogeneous degree 2 in the state coefficients.
引用
收藏
页码:533 / 541
页数:9
相关论文
共 47 条
[31]   Entanglement concentration for polarization-spatial-time-bin hyperentangled Bell states [J].
Wang, Meiyu ;
Xu, Jingzhou ;
Yan, Fengli ;
Gao, Ting .
EPL, 2018, 123 (06)
[32]   Bell states and entanglement of two-dimensional polar molecules in electric fields [J].
Liao, Ying-Yen .
EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (11)
[33]   Entanglement of Three-Qubit Greenberger-Horne-Zeilinger-Symmetric States [J].
Eltschka, Christopher ;
Siewert, Jens .
PHYSICAL REVIEW LETTERS, 2012, 108 (02)
[34]   Loss-resilient photonic entanglement swapping using optical hybrid states [J].
Lim, Youngrong ;
Joo, Jaewoo ;
Spiller, Timothy P. ;
Jeong, Hyunseok .
PHYSICAL REVIEW A, 2016, 94 (06)
[35]   Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states [J].
Tian, Liang ;
Sun, Li-Li ;
Zhu, Xiao-Yu ;
Song, Xue-Ke ;
Yan, Lei-Lei ;
Liang, Er-Jun ;
Su, Shi-Lei ;
Feng, Mang .
CHINESE PHYSICS B, 2020, 29 (05)
[36]   Generalized Weyl-Heisenberg Algebra, Qudit Systems and Entanglement Measure of Symmetric States via Spin Coherent States [J].
Daoud, Mohammed ;
Kibler, Maurice R. .
ENTROPY, 2018, 20 (04)
[37]   Uncertainty Inequality for the Entanglement of Both Two-rebits and Two-qubits States [J].
Avila, M. .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (10) :3234-3238
[38]   Uncertainty Inequality for the Entanglement of Both Two-rebits and Two-qubits States [J].
M. Ávila .
International Journal of Theoretical Physics, 2019, 58 :3234-3238
[39]   Controllable generation of mixed two-photon states [J].
Dai, Jibo ;
Len, Yink Loong ;
Teo, Yong Siah ;
Krivitsky, Leonid A. ;
Englert, Berthold-Georg .
NEW JOURNAL OF PHYSICS, 2013, 15
[40]   Entanglement and quantum phase transition in a mixed-spin Heisenberg chain with single-ion anisotropy [J].
Solano-Carrillo, E. ;
Franco, R. ;
Silva-Valencia, J. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2011, 390 (11) :2208-2214