GLOBAL STABILITY OF A REACTION-DIFFUSION SYSTEM OF A COMPETITOR-COMPETITOR-MUTUALIST MODEL

被引:3
作者
Xu, Shihe [1 ]
机构
[1] Zhaoqing Univ, Dept Math, Zhaoqing 526061, Peoples R China
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2011年 / 15卷 / 04期
基金
美国国家科学基金会;
关键词
Competitor-competitor-mutualist model; Positive constant steady-state solution; Reaction-diffusion system; Global asymptotic stability;
D O I
10.11650/twjm/1500406367
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a reaction-diffusion system of a competitor-competitor-mutualist model with Neumann boundary condition. Using iteration method, we investigate the global asymptotic stability of the unique positive constant steady-state solution under some assumptions. We also give some sufficient conditions under which there are no nonconstant positive steady-state solution exist.
引用
收藏
页码:1617 / 1627
页数:11
相关论文
共 50 条
[21]   Stability and Spectral Comparison of a Reaction-Diffusion System with Mass Conservation [J].
Latos, Evangelos ;
Morita, Yoshihisa ;
Suzuki, Takashi .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2018, 30 (02) :823-844
[22]   Global existence and global non-existence of solutions to a reaction-diffusion system [J].
Zheng, SN .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (03) :327-340
[23]   Global asymptotic stability of Lotka-Volterra competition reaction-diffusion systems with time delays [J].
Wang, Yuan-Ming .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (1-2) :337-346
[24]   Global weak solution to a generic reaction-diffusion nonlinear parabolic system [J].
Hana, Matallah ;
Messaoud, Maouni ;
Hakim, Lakhal .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (11) :6935-6950
[25]   GLOBAL EXISTENCE AND UNIQUENESS OF A REACTION-DIFFUSION SYSTEM VIA INVARIANT SOLUTIONS [J].
QI, YW .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (10) :1277-1291
[26]   GLOBAL ATTRACTOR FOR A PARTLY DISSIPATIVE REACTION-DIFFUSION SYSTEM WITH DISCONTINUOUS NONLINEARITY [J].
Zhao, Jia-Cheng ;
Ma, Zhong-Xin .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (02) :893-908
[27]   Global existence and finite time blow up for a reaction-diffusion system [J].
Wang, MX .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (01) :160-167
[28]   Global dynamics of a Nonlocal Periodic Reaction-Diffusion Model of Chikungunya Disease [J].
Li, Zhimin ;
Zhao, Xiao-Qiang .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (04) :3073-3107
[29]   Global Existence and Asymptotic Behavior for a Reaction-Diffusion System with Unbounded Coefficients [J].
Majdoub, Mohamed ;
Tatar, Nasser-Eddine .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (04)
[30]   Stability and Hopf Bifurcation of a Reaction-Diffusion System with Weak Allee Effect [J].
Yue, Jia-Long ;
Ma, Zhan-Ping .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (07)