A Fully-Implantable Wireless System for Human Brain-Machine Interfaces Using Brain Surface Electrodes: W-HERBS

被引:29
作者
Hirata, Masayuki [1 ]
Matsushita, Kojiro [1 ]
Suzuki, Takafumi [2 ]
Yoshida, Takeshi [3 ]
Sato, Fumihiro [4 ]
Morris, Shayne [1 ]
Yanagisawa, Takufumi [1 ]
Goto, Tetsu [1 ]
Kawato, Mitsuo [5 ]
Yoshimine, Toshiki [1 ]
机构
[1] Osaka Univ, Dept Neurosurg, Sch Med, Suita, Osaka 5650871, Japan
[2] Univ Tokyo, Grad Sch Informat Sci & Technol, Tokyo 1130033, Japan
[3] Hiroshima Univ, Grad Sch Adv Sci Matter, Higashihiroshima 7398530, Japan
[4] Tohoku Univ, Grp Elect Engn Commun Engn Elect Engn & Informat, Sendai, Miyagi 9808578, Japan
[5] AIR Brain Informat Commun Res Lab Grp, Kyoto 6190288, Japan
关键词
brain-machine interface; implantable device; wireless; brain surface electrodes; motor restoration;
D O I
10.1587/transcom.E94.B.2448
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The brain-machine interface (BMI) is a new method for man-machine interface, which enables us to control machines and to communicate with others, without input devices but directly using brain signals. Previously, we successfully developed a real time control system for operating a robot arm using brain-machine interfaces based on the brain surface electrodes, with the purpose of restoring motor and communication functions in severely disabled people such as amyotrophic lateral sclerosis patients. A fully-implantable wireless system is indispensable for the clinical application of invasive BMI in order to reduce the risk of infection. This system includes many new technologies such as two 64-channel integrated analog amplifier chips, a Bluetooth wireless data transfer circuit, a wirelessly rechargeable battery, 3 dimensional tissue-fitting high density electrodes, a titanium head casing, and a fluorine polymer body casing. This paper describes key features of the first prototype of the BMI system for clinical application.
引用
收藏
页码:2448 / 2453
页数:6
相关论文
共 9 条
[1]  
Chao Zenas C, 2010, Front Neuroeng, V3, P3, DOI 10.3389/fneng.2010.00003
[2]  
HIRATA M, 2011, Patent No. 2011001402
[3]  
HIRATA M, 2009, Patent No. 12378695
[4]   Brain-computer interfaces for communication and control [J].
Wolpaw, JR ;
Birbaumer, N ;
McFarland, DJ ;
Pfurtscheller, G ;
Vaughan, TM .
CLINICAL NEUROPHYSIOLOGY, 2002, 113 (06) :767-791
[5]   Real-time control of a prosthetic hand using human electrocorticography signals [J].
Yanagisawa, Takufumi ;
Hirata, Masayuki ;
Saitoh, Youichi ;
Goto, Tetsu ;
Kishima, Haruhiko ;
Fukuma, Ryohei ;
Yokoi, Hiroshi ;
Kamitani, Yukiyasu ;
Yoshimine, Toshiki .
JOURNAL OF NEUROSURGERY, 2011, 114 (06) :1715-1722
[6]   Neural decoding using gyral and intrasulcal electrocorticograms [J].
Yanagisawa, Takufumi ;
Hirata, Masayuki ;
Saitoh, Youichi ;
Kato, Amami ;
Shibuya, Daisuke ;
Kamitani, Yukiyasu ;
Yoshimine, Toshiki .
NEUROIMAGE, 2009, 45 (04) :1099-1106
[7]  
Yokoi H., 2009, INT J FACTORY AUTOMA, V1, P74
[8]   A High-Linearity Low-Noise Amplifier with Variable Bandwidth for Neural Recoding Systems [J].
Yoshida, Takeshi ;
Sueishi, Katsuya ;
Iwata, Atsushi ;
Matsushita, Kojiro ;
Hirata, Masayuki ;
Suzuki, Takafumi .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2011, 50 (04)
[9]  
Yoshida T, 2010, IEICE T ELECTRON, VE93C, P849, DOI [10.1587/transele.E93.C849, 10.1587/transele.E93.C.849]