On dynamical properties of multidimensional diffeomorphisms from Newhouse regions: I

被引:63
作者
Gonchenko, S. V. [1 ]
Shilnikov, L. P. [1 ]
Turaev, D. V. [2 ]
机构
[1] Inst Appl Math & Cybernet, RU-603005 Nizhnii Novgorod, Russia
[2] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
关键词
D O I
10.1088/0951-7715/21/5/003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The phenomenon of the generic coexistence of infinitely many periodic orbits with different numbers of positive Lyapunov exponents is analysed. Bifurcations of periodic orbits near a homoclinic tangency are studied. Criteria for the coexistence of infinitely many stable periodic orbits and for the coexistence of infinitely many stable invariant tori are given.
引用
收藏
页码:923 / 972
页数:50
相关论文
共 61 条
[1]  
Afraimovich V. S., 1990, SELECTA MATH SOVIETI, V9, P205
[2]  
AFRAIMOVICH VS, 1975, T MOSCOW MATH SOC, V28, P179
[3]  
[Anonymous], J MATH SCI
[4]  
[Anonymous], 1987, MATH USSR SB
[5]  
[Anonymous], 1998, METHODS QUALITATIV 1
[6]  
[Anonymous], 1992, SOV MATH DOKL
[7]   THE DYNAMICS OF TRIPLE CONVECTION [J].
ARNEODO, A ;
COULLET, PH ;
SPIEGEL, EA .
GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 1985, 31 (1-2) :1-48
[8]   ASYMPTOTIC CHAOS [J].
ARNEODO, A ;
COULLET, PH ;
SPIEGEL, EA ;
TRESSER, C .
PHYSICA D, 1985, 14 (03) :327-347
[9]  
Biragov V. S., 1992, SELECTA MATH SOVIET, V11, P333
[10]  
Bykov V. V., 1980, Methods of the Qualitative Theory of Differential Equations, P44