Electrons on hexagonal lattices and applications to nanotubes

被引:67
作者
Hartmann, B [1 ]
Zakrzewski, WJ [1 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
来源
PHYSICAL REVIEW B | 2003年 / 68卷 / 18期
关键词
D O I
10.1103/PhysRevB.68.184302
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider a Frohlich-type Hamiltonian on a hexagonal lattice. Aiming to describe nanotubes, we choose this two-dimensional lattice to be periodic and to have a large extension in one (x) direction and a small extension in the other (y) direction. We study the existence of solitons in this model using both analytical and numerical methods. We find exact solutions of our equations and discuss some of their properties.
引用
收藏
页数:9
相关论文
共 25 条
[1]  
[Anonymous], 1996, HIGH RESOLUTION TEM
[2]  
ASHER U, 1981, ACM T MATH SOFTWARE, V7, P209, DOI DOI 10.1145/355945.355950
[3]  
ASHER U, 1979, MATH COMPUT, V33, P659
[4]   Spontaneously localized electron states in a discrete anisotropic two-dimensional lattice [J].
Brizhik, L ;
Piette, B ;
Zakrzewski, WJ .
PHYSICA D, 2000, 146 (1-4) :275-288
[5]   Electron self-trapping in a discrete two-dimensional lattice [J].
Brizhik, L ;
Eremko, A ;
Piette, B ;
Zakrzewski, W .
PHYSICA D, 2001, 159 (1-2) :71-90
[6]  
BRIZHIK L, 2001, UKR FIZ ZH, V46, P503
[7]   Q-BALLS [J].
COLEMAN, S .
NUCLEAR PHYSICS B, 1985, 262 (02) :263-283
[8]  
Davydov A.S, 1985, Solitons in Molecular Systems, DOI 10.1007/978-94-017-3025-9
[9]  
DRESSELHAUS M, 1996, CARBON NANOTUBES PRE
[10]  
Dresselhaus M. S., 1996, SCI FULLERENES CARBO