Combination therapy of Ulinastatin with Thrombomodulin alleviates endotoxin (LPS)-induced liver and kidney injury via inhibiting apoptosis, oxidative stress and HMGB1/TLR4/NF-κB pathway

被引:33
|
作者
Zhang, Xiong [1 ]
Su, Chenlin [1 ]
Zhao, Shuxin [1 ]
Li, Ji [1 ]
Yu, Feng [1 ]
机构
[1] China Pharmaceut Univ, Dept Basic Med & Clin Pharm, Jiangning, Peoples R China
关键词
Ulinastatin; Thrombomodulin; lipopolysaccharide; organ injury; apoptosis; anti-inflammatory; oxidative stress; NF-KAPPA-B; SEPSIS; SHOCK; INFLAMMATION; EXPRESSION; ALPHA; CELLS; MICE;
D O I
10.1080/21655979.2021.2024686
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Sepsis is a type of systemic inflammation response syndrome that leads to organ function disorders. Currently, there is no specific medicine for sepsis in clinical practice. Lipopolysaccharide (LPS) is an important endotoxin that causes sepsis. Here, we report an effective two-drug combination therapy to treat LPS-induced liver and kidney injury in endotoxic rats. Ulinastatin (UTI) and Thrombomodulin (TM) are biological macromolecules extracted from urine. In our study, combination therapy significantly improved LPS-induced liver and kidney pathological structure and functional injury, and significantly improved the survival rate of endotoxic rats. Results of TUNEL staining and Western blot showed that UTI combined with TM inhibited the excessive apoptosis of liver and kidney cells caused by LPS. The drug combination also promoted the proliferation of liver and kidney cells, reduced the levels of pro-inflammatory factors interleukin (IL)-6, IL-1 beta, tumor or necrosis factor (TNF)-alpha and nitric oxide, and down-regulated the expression of High Mobility Group Box 1 (HMGB1), Toll-like receptor (TLR) 4 and Nuclear Factor (NF)-kappa B phosphorylation to inhibit inflammation. In addition, the combination of UTI and TM also promoted the production of a variety of antioxidant enzymes in the tissues and inhibited the production of lipid peroxidation malondialdehyde (MDA) to enhance antioxidant defenses. Our experiments also proved that UTI combined with TM did not reduce the anticoagulant effect of TM. These results suggested that UTI combined with TM can improve endotoxin-induced liver and kidney damage and mortality by inhibiting liver and kidney cell apoptosis, promoting proliferation, and inhibiting inflammation and oxidative injury.
引用
收藏
页码:2951 / 2970
页数:20
相关论文
共 50 条
  • [21] Afzelechin alleviates deltamethrin induced hepatic dysfunction via regulating TLR4/MyD88, HMGB1/RAGE and NF-κB pathway
    Alzahrani, Fuad M.
    Alzahrani, Khalid J.
    Alsharif, Khalaf F.
    Hayat, Muhammad Faisal
    Al-Emam, Ahmed
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2025, 497
  • [22] Effect of Shikonin on Spinal Cord Injury in Rats Via Regulation of HMGB1/TLR4/NF-κB Signaling Pathway
    Bi, Yihui
    Zhu, Yapeng
    Zhang, Mingkai
    Zhang, Keke
    Hua, Xingyi
    Fang, Zheng
    Zhou, Jian
    Dai, Wenjie
    Cui, Yixing
    Li, Jun
    You, Tao
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2017, 43 (02) : 481 - 491
  • [23] Cryptotanshinone alleviates polycystic ovary syndrome in rats by regulating the HMGB1/TLR4/NF-κB signaling pathway
    Yang, Yijiao
    Yang, Ling
    Qi, Cao
    Hu, Guohua
    Wang, Longhui
    Sun, Zhuojun
    Ni, Xiaorong
    MOLECULAR MEDICINE REPORTS, 2020, 22 (05) : 3851 - 3861
  • [24] Anti-Inflammatory Pyranochalcone Derivative Attenuates LPS-Induced Acute Kidney Injury via Inhibiting TLR4/NF-κB Pathway
    Shi, Min
    Zeng, Xiaoxi
    Guo, Fan
    Huang, Rongshuang
    Feng, Yanhuan
    Ma, Liang
    Zhou, Li
    Fu, Ping
    MOLECULES, 2017, 22 (10)
  • [25] Tenuigenin exhibits protective effects against LPS-induced acute kidney injury via inhibiting TLR4/NF-κB signaling pathway
    Fu, Haiyan
    Hu, Zhansheng
    Di, Xingwei
    Zhang, Qiuhong
    Zhou, Rongbin
    Du, Hongyang
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2016, 791 : 229 - 234
  • [26] Sesamin Protects against APAP-Induced Acute Liver Injury by Inhibiting Oxidative Stress and Inflammatory Response via Deactivation of HMGB1/TLR4/NFκB Signal in Mice
    Du, Hui
    Tong, Shiwen
    Kuang, Ge
    Gong, Xia
    Jiang, Ningman
    Yang, Xian
    Liu, Hao
    Li, Nana
    Xie, Yao
    Xiang, Yang
    Guo, Jiashi
    Li, Zhenhan
    Yuan, Yinglin
    Wu, Shengwang
    Wan, Jingyuan
    JOURNAL OF IMMUNOLOGY RESEARCH, 2023, 2023
  • [27] Resveratrol protects against asthma-induced airway inflammation and remodeling by inhibiting the HMGB1/TLR4/NF-κB pathway
    Jiang, Huanhuan
    Duan, Junyan
    Xu, Kaihong
    Zhang, Wenbo
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2019, 18 (01) : 459 - 466
  • [28] MicroRNA-129-5p alleviates spinal cord injury in mice via suppressing the apoptosis and inflammatory response through HMGB1/TLR4/NF-κB pathway
    Wan, Guang
    An, Yongbo
    Tao, Jingang
    Wang, Yanli
    Zhou, Qinglan
    Yang, Rongli
    Liang, Qiudong
    BIOSCIENCE REPORTS, 2020, 40
  • [29] Fosinoprilat alleviates lipopolysaccharide (LPS)-induced inflammation by inhibiting TLR4/NF-κB signaling in monocytes
    Yang, Shuansuo
    Li, Ruogu
    Qu, Xinkai
    Tang, Lei
    Ge, Guanghao
    Fang, Weiyi
    Qiao, Zengyong
    Ma, Jiangwei
    Hou, Yuemei
    Liu, Huajin
    CELLULAR IMMUNOLOGY, 2013, 284 (1-2) : 182 - 186
  • [30] Isoliquiritigenin Alleviates Diabetic Kidney Disease via Oxidative Stress and the TLR4/NF-κB/NLRP3 Inflammasome Pathway
    Wang, Yanhong
    Yang, Jia
    Chang, Xinyue
    Xue, Yuan
    Liu, Gaohong
    Zhang, Tingting
    Chen, Weihao
    Fan, Weiping
    Tian, Jihua
    Ren, Xiaojun
    MOLECULAR NUTRITION & FOOD RESEARCH, 2024, 68 (16)