Machine Learning Based Localization and Classification with Atomic Magnetometers

被引:23
作者
Deans, Cameron [1 ]
Griffin, Lewis D. [2 ]
Marmugi, Luca [1 ]
Renzoni, Ferruccio [1 ]
机构
[1] UCL, Dept Phys & Astron, Gower St, London WC1E 6BT, England
[2] UCL, Dept Comp Sci, Gower St, London WC1E 6EA, England
基金
英国工程与自然科学研究理事会;
关键词
MAGNETIC INDUCTION TOMOGRAPHY;
D O I
10.1103/PhysRevLett.120.033204
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate identification of position, material, orientation, and shape of objects imaged by a Rb-85 atomic magnetometer performing electromagnetic induction imaging supported by machine learning. Machine learning maximizes the information extracted from the images created by the magnetometer, demonstrating the use of hidden data. Localization 2.6 times better than the spatial resolution of the imaging system and successful classification up to 97% are obtained. This circumvents the need of solving the inverse problem and demonstrates the extension of machine learning to diffusive systems, such as low-frequency electrodynamics in media. Automated collection of task-relevant information from quantum-based electromagnetic imaging will have a relevant impact from biomedicine to security.
引用
收藏
页数:5
相关论文
共 33 条
  • [1] Discriminating cognitive status in Parkinson's disease through functional connectomics and machine learning
    Abos, Alexandra
    Baggio, Hugo C.
    Segura, Barbara
    Garcia-Diaz, Anna I.
    Compta, Yaroslau
    Marti, Maria Jose
    Valldeoriola, Francesc
    Junque, Carme
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [2] [Anonymous], ARXIV170500565
  • [3] Bishop Christopher M, 2016, Pattern recognition and machine learning
  • [4] Entanglement-Based Machine Learning on a Quantum Computer
    Cai, X. -D.
    Wu, D.
    Su, Z. -E.
    Chen, M. -C.
    Wang, X. -L.
    Li, Li
    Liu, N. -L.
    Lu, C. -Y.
    Pan, J. -W.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (11)
  • [5] Room temperature femtotesla radio-frequency atomic magnetometer
    Chalupczak, W.
    Godun, R. M.
    Pustelny, S.
    Gawlik, W.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (24)
  • [6] CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
  • [7] Identifying Structural Flow Defects in Disordered Solids Using Machine-Learning Methods
    Cubuk, E. D.
    Schoenholz, S. S.
    Rieser, J. M.
    Malone, B. D.
    Rottler, J.
    Durian, D. J.
    Kaxiras, E.
    Liu, A. J.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (10)
  • [8] Filtered Back Projection, Adaptive Statistical Iterative Reconstruction, and a Model-based Iterative Reconstruction in Abdominal CT: An Experimental Clinical Study
    Deak, Zsuzsanna
    Grimm, Jochen M.
    Treitl, Marcus
    Geyer, Lucas L.
    Linsenmaier, Ulrich
    Koerner, Markus
    Reiser, Maximilian F.
    Wirth, Stefan
    [J]. RADIOLOGY, 2013, 266 (01) : 197 - 206
  • [9] Through-barrier electromagnetic imaging with an atomic magnetometer
    Deans, Cameron
    Marmugi, Luca
    Renzoni, Ferruccio
    [J]. OPTICS EXPRESS, 2017, 25 (15): : 17911 - 17917
  • [10] Optical atomic magnetometry for magnetic induction tomography of the heart
    Deans, Cameron
    Marmugi, Luca
    Hussain, Sarah
    Renzoni, Ferruccio
    [J]. QUANTUM OPTICS, 2016, 9900