Intra- and Inter-Individual Variance of Gene Expression in Clinical Studies

被引:15
作者
Cheng, Wei-Chung [1 ]
Shu, Wun-Yi [2 ]
Li, Chia-Yang [3 ]
Tsai, Min-Lung [4 ]
Chang, Cheng-Wei [5 ]
Chen, Chaang-Ray [5 ]
Cheng, Hung-Tsu [6 ]
Wang, Tzu-Hao [7 ,8 ,9 ]
Hsu, Ian C. [5 ]
机构
[1] Taipei Vet Gen Hosp, Div Pediat Neurosurg, Neurol Inst, Taipei, Taiwan
[2] Natl Tsing Hua Univ, Inst Stat, Hsinchu, Taiwan
[3] Natl Hlth Res Inst, Div Infect Dis, Miaoli, Taiwan
[4] Natl Taiwan Sport Univ, Inst Athlet, Taichung, Taiwan
[5] Natl Tsing Hua Univ, Dept Biomed Engn & Environm Sci, Hsinchu, Taiwan
[6] Natl Tsing Hua Univ Hsinchu, Inst Nanoengn & Microsyst, Hsinchu, Taiwan
[7] Chang Gung Mem Hosp, Genom Med Res Core Lab, Tao Yuan, Taiwan
[8] Chang Gung Mem Hosp, Lin Kou Med Ctr, Dept Obstet & Gynecol, Tao Yuan, Taiwan
[9] Chang Gung Univ, Tao Yuan, Taiwan
关键词
CONTROL MAQC PROJECT; MICROARRAY PLATFORMS; NATURAL VARIATION; AMNIOTIC-FLUID; BREAST-CANCER; PATTERNS; DESIGN; CELLS; REPRODUCIBILITY; PROPORTION;
D O I
10.1371/journal.pone.0038650
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Variance in microarray studies has been widely discussed as a critical topic on the identification of differentially expressed genes; however, few studies have addressed the influence of estimating variance. Methodology/Principal Findings: To break intra- and inter-individual variance in clinical studies down to three levels-technical, anatomic, and individual-we designed experiments and algorithms to investigate three forms of variances. As a case study, a group of "inter-individual variable genes'' were identified to exemplify the influence of underestimated variance on the statistical and biological aspects in identification of differentially expressed genes. Our results showed that inadequate estimation of variance inevitably led to the inclusion of non-statistically significant genes into those listed as significant, thereby interfering with the correct prediction of biological functions. Applying a higher cutoff value of fold changes in the selection of significant genes reduces/eliminates the effects of underestimated variance. Conclusions/Significance: Our data demonstrated that correct variance evaluation is critical in selecting significant genes. If the degree of variance is underestimated, "noisy'' genes are falsely identified as differentially expressed genes. These genes are the noise associated with biological interpretation, reducing the biological significance of the gene set. Our results also indicate that applying a higher number of fold change as the selection criteria reduces/eliminates the differences between distinct estimations of variance.
引用
收藏
页数:8
相关论文
共 63 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]   Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [J].
Alon, U ;
Barkai, N ;
Notterman, DA ;
Gish, K ;
Ybarra, S ;
Mack, D ;
Levine, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) :6745-6750
[3]   Standardizing global gene expression analysis between laboratories and across platforms [J].
Bammler, T ;
Beyer, RP ;
Bhattacharya, S ;
Boorman, GA ;
Boyles, A ;
Bradford, BU ;
Bumgarner, RE ;
Bushel, PR ;
Chaturvedi, K ;
Choi, D ;
Cunningham, ML ;
Dengs, S ;
Dressman, HK ;
Fannin, RD ;
Farun, FM ;
Freedman, JH ;
Fry, RC ;
Harper, A ;
Humble, MC ;
Hurban, P ;
Kavanagh, TJ ;
Kaufmann, WK ;
Kerr, KF ;
Jing, L ;
Lapidus, JA ;
Lasarev, MR ;
Li, J ;
Li, YJ ;
Lobenhofer, EK ;
Lu, X ;
Malek, RL ;
Milton, S ;
Nagalla, SR ;
O'Malley, JP ;
Palmer, VS ;
Pattee, P ;
Paules, RS ;
Perou, CM ;
Phillips, K ;
Qin, LX ;
Qiu, Y ;
Quigley, SD ;
Rodland, M ;
Rusyn, I ;
Samson, LD ;
Schwartz, DA ;
Shi, Y ;
Shin, JL ;
Sieber, SO ;
Slifer, S .
NATURE METHODS, 2005, 2 (05) :351-356
[4]   Testing the additional predictive value of high-dimensional molecular data [J].
Boulesteix, Anne-Laure ;
Hothorn, Torsten .
BMC BIOINFORMATICS, 2010, 11
[5]   Cis-acting variation in the expression of a high proportion of genes in human brain [J].
Bray, NJ ;
Buckland, PR ;
Owen, MJ ;
O'Donovan, MC .
HUMAN GENETICS, 2003, 113 (02) :149-153
[6]   Analyses of placental gene expression in pregnancy-related hypertensive disorders [J].
Chang, Shuenn-Dyh ;
Chao, An-Shine ;
Peng, Hsiu-Huei ;
Chang, Yao-Lung ;
Wang, Chao-Ning ;
Cheng, Po-Jen ;
Lee, Yun-Shien ;
Chao, Angel ;
Wang, Tzu-Hao .
TAIWANESE JOURNAL OF OBSTETRICS & GYNECOLOGY, 2011, 50 (03) :283-291
[7]   THEME: A web tool for loop-design microarray data analysis [J].
Chen, Chaang-Ray ;
Shu, Wun-Yi ;
Tsai, Min-Lung ;
Cheng, Wei-Chung ;
Hsu, Ian C. .
COMPUTERS IN BIOLOGY AND MEDICINE, 2012, 42 (02) :228-234
[8]   Natural variation in human gene expression assessed in lymphoblastoid cells [J].
Cheung, VG ;
Conlin, LK ;
Weber, TM ;
Arcaro, M ;
Jen, KY ;
Morley, M ;
Spielman, RS .
NATURE GENETICS, 2003, 33 (03) :422-425
[9]   Gene expression variation in the adult human retina [J].
Chowers, I ;
Liu, DM ;
Farkas, RH ;
Gunatilaka, TL ;
Hackam, AS ;
Bernstein, SL ;
Campochiaro, PA ;
Parmigiani, G ;
Zack, DJ .
HUMAN MOLECULAR GENETICS, 2003, 12 (22) :2881-2893
[10]   Intertwining Threshold Settings, Biological Data and Database Knowledge to Optimize the Selection of Differentially Expressed Genes from Microarray [J].
Chuchana, Paul ;
Holzmuller, Philippe ;
Vezilier, Frederic ;
Berthier, David ;
Chantal, Isabelle ;
Severac, Dany ;
Lemesre, Jean Loup ;
Cuny, Gerard ;
Nirde, Philippe ;
Bucheton, Bruno .
PLOS ONE, 2010, 5 (10)