Visualising Time-evolving Semantic Biomedical Data

被引:1
|
作者
Pereira, Arnaldo [1 ]
Rafael Almeida, Joao [1 ,2 ]
Lopes, Rui Pedro [3 ]
Oliveira, Jose Luis [1 ]
机构
[1] Univ Aveiro, DETI IEETA, Aveiro, Portugal
[2] Univ A Coruna, Dept Informat & Commun Technol, La Coruna, Spain
[3] Polytech Inst Braganca, CeDRI, Braganca, Portugal
关键词
Biomedical Data; Temporal Data; Data Visualisation; Evidence-based Medicine; Ontology Evolution; ONTOLOGY; DESIGN;
D O I
10.1109/CBMS55023.2022.00053
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Today, medical studies enable a deeper understanding of health conditions, diseases and treatments, helping to improve medical care services. In observational studies, an adequate selection of datasets is important, to ensure the study's success and the quality of the results obtained. During the feasibility study phase, inclusion and exclusion criteria are defined, together with specific database characteristics to construct the cohort. However, it is not easy to compare database characteristics and their evolution over time during this selection. Data comparisons can be made using the data properties and aggregations, but the inclusion of temporal information becomes more complex due to the continuous evolution of concepts over time. In this paper, we propose two visualisation methods aiming for a better description of data evolution in clinical registers using biomedical standard vocabularies.
引用
收藏
页码:264 / 269
页数:6
相关论文
共 50 条
  • [1] Learning on time-evolving data
    Zhang, Chang-Shui
    Zhang, Jian-Wen
    Jisuanji Xuebao/Chinese Journal of Computers, 2013, 36 (02): : 310 - 316
  • [2] On the generation of time-evolving regional data
    Tzouramanis, T
    Vassilakopoulos, M
    Manolopoulos, Y
    GEOINFORMATICA, 2002, 6 (03) : 207 - 231
  • [3] On the Generation of Time-Evolving Regional Data*
    Theodoros Tzouramanis
    Michael Vassilakopoulos
    Yannis Manolopoulos
    GeoInformatica, 2002, 6 : 207 - 231
  • [4] Probabilistic clustering of time-evolving distance data
    Vogt, Julia E.
    Kloft, Marius
    Stark, Stefan
    Raman, Sudhir S.
    Prabhakaran, Sandhya
    Roth, Volker
    Raetsch, Gunnar
    MACHINE LEARNING, 2015, 100 (2-3) : 635 - 654
  • [5] Comparison of access methods for time-evolving data
    Salzberg, B
    Tsotras, VJ
    ACM COMPUTING SURVEYS, 1999, 31 (02) : 158 - 221
  • [6] Probabilistic clustering of time-evolving distance data
    Julia E. Vogt
    Marius Kloft
    Stefan Stark
    Sudhir S. Raman
    Sandhya Prabhakaran
    Volker Roth
    Gunnar Rätsch
    Machine Learning, 2015, 100 : 635 - 654
  • [7] A Framework for Clustering Categorical Time-Evolving Data
    Cao, Fuyuan
    Liang, Jiye
    Bai, Liang
    Zhao, Xingwang
    Dang, Chuangyin
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2010, 18 (05) : 872 - 882
  • [8] Sextant: Visualizing time-evolving linked geospatial data
    Nikolaou, Charalampos
    Dogani, Kallirroi
    Bereta, Konstantina
    Garbis, George
    Karpathiotakis, Manos
    Kyzirakos, Kostis
    Koubarakis, Manolis
    JOURNAL OF WEB SEMANTICS, 2015, 35 : 35 - 52
  • [9] Dynamic Modeling and Forecasting of Time-evolving Data Streams
    Matsubara, Yasuko
    Sakurai, Yasushi
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 458 - 468
  • [10] Benchmarking access methods for time-evolving regional data
    Tzouramanis, T
    Vassilakopoulos, M
    Manolopoulos, Y
    DATA & KNOWLEDGE ENGINEERING, 2004, 49 (03) : 243 - 286