State of health diagnosis model for lithium ion batteries based on real-time impedance and open circuit voltage parameters identification method

被引:72
作者
Cui, Yingzhi [1 ,2 ]
Zuo, Pengjian [1 ,2 ]
Du, Chunyu [1 ,2 ]
Gao, Yunzhi [1 ,2 ]
Yang, Jie [2 ]
Cheng, Xinqun [1 ,2 ]
Ma, Yulin [1 ,2 ]
Yin, Geping [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, MIIT Key Lab Crit Mat Technol New Energy Convers, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Sch Chem & Chem Engn, Inst Adv Chem Power Sources, Harbin 150001, Heilongjiang, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
Lithium ion battery; State of health diagnosis; Real-time; Charging curve; Fast open circuit voltage determination; HYBRID ELECTRIC VEHICLES; CHARGE ESTIMATION; CAPACITY FADE; ELECTROCHEMICAL IMPEDANCE; PHYSICAL PRINCIPLES; POLYMER BATTERIES; ONLINE ESTIMATION; SHALLOW-DEPTH; OF-CHARGE; CELLS;
D O I
10.1016/j.energy.2017.12.033
中图分类号
O414.1 [热力学];
学科分类号
摘要
Impedance and open circuit voltage (OCV) parameter identification is the key technology for state of health (SOH) diagnosis of lithium ion battery (LIB) in an equivalent circuit model (ECM). The current identification methods of impedance and OCV parameter are time consuming, destructive, non-real-time and costly. It is usually difficult to identify each component from the overall impedance parameter using aforesaid impedance identification methods, which severely affects the identification precision of impedance parameter. Furthermore, fast OCV identification is another difficult issue to be resolved. In this paper, a new real-time and nondestructive method is developed to identify dynamic impedance parameter for SOH diagnosis ECM (SDEM) of LIB. This method can identify ohmic impedance and charge transfer impedance from internal impedance and realize the transformation of Warburg diffusion impedance from frequency domain to time domain. Fast determination method of OCV is proposed based on the short-time and low current pulse to realize real-time measurement and identification of the OCV. Dynamic update of the all parameters is conducted based on least squares method (LSM). SDEM with new developed impedance and OCV parameter identification method is validated with high accuracy. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:647 / 656
页数:10
相关论文
共 45 条
[1]   Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation [J].
Andre, D. ;
Meiler, M. ;
Steiner, K. ;
Wimmer, Ch ;
Soczka-Guth, T. ;
Sauer, D. U. .
JOURNAL OF POWER SOURCES, 2011, 196 (12) :5334-5341
[2]   State of health assessment for lithium batteries based on voltage-time relaxation measure [J].
Baghdadi, Issam ;
Briat, Olivier ;
Gyan, Philippe ;
Vinassa, Jean Michel .
ELECTROCHIMICA ACTA, 2016, 194 :461-472
[3]   Theory of the electrochemical impedance of anomalous diffusion [J].
Bisquert, J ;
Compte, A .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2001, 499 (01) :112-120
[4]   Differential voltage analyses of high-power lithium-ion cells. 4. Cells containing NMC [J].
Bloom, Ira ;
Walker, Lee K. ;
Basco, John K. ;
Abraham, Daniel P. ;
Christophersen, Jon P. ;
Ho, Chinh D. .
JOURNAL OF POWER SOURCES, 2010, 195 (03) :877-882
[5]  
Buller, 2003, THESIS
[6]   Practical failure recognition model of lithium-ion batteries based on partial charging process [J].
Chen, Kunlong ;
Zheng, Fangdan ;
Jiang, Jiuchun ;
Zhang, Weige ;
Jiang, Yan ;
Chen, Kunjin .
ENERGY, 2017, 138 :1199-1208
[7]   Prediction of lithium-ion battery capacity with metabolic grey model [J].
Chen, Lin ;
Lin, Weilong ;
Li, Junzi ;
Tian, Binbin ;
Pan, Haihong .
ENERGY, 2016, 106 :662-672
[8]   Cyclable lithium and capacity loss in Li-ion cells [J].
Christensen, J ;
Newman, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (04) :A818-A829
[9]   Recovery Strategy and Mechanism of Aged Lithium Ion Batteries after Shallow Depth of Discharge at Elevated Temperature [J].
Cui, Yingzhi ;
Du, Chunyu ;
Gao, Yunzhi ;
Yang, Jie ;
Zhang, Lingling ;
Guan, Ting ;
Yang, Lijie ;
Cheng, Xinqun ;
Zuo, Pengjian ;
Ma, Yulin ;
Yin, Geping .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (08) :5234-5242
[10]   Multi-stress factor model for cycle lifetime prediction of lithium ion batteries with shallow-depth discharge [J].
Cui, Yingzhi ;
Du, Chunyu ;
Yin, Geping ;
Gao, Yunzhi ;
Zhang, Lingling ;
Guan, Ting ;
Yang, Lijie ;
Wang, Fuping .
JOURNAL OF POWER SOURCES, 2015, 279 :123-132