3d Printing of Porous Glass Products Using the Robocasting Technique

被引:2
|
作者
Derevianko, O., V [1 ]
Derevianko, O., V [1 ]
Zakiev, V., I [2 ]
Zgalat-Lozynskyy, O. B. [1 ]
机构
[1] Natl Acad Sci Ukraine, Frantsevich Inst Problems Mat Sci, Kiev, Ukraine
[2] Natl Aviat Univ, Kiev, Ukraine
关键词
3D printing; porosity; glass; robocasting; additive techniques; wear resistance; MECHANICAL-PROPERTIES; SCAFFOLDS; CERAMICS; FABRICATION;
D O I
10.1007/s11106-022-00267-z
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
3D printing of porous SiO2-Al2O3-Fe2O3-MgO-CaO-Na2O glass products with use of the robocasting technique was comprehensively studied. Features in the preparation of glass-based pastes with gelatin or agar for 3D printing were established and recommendations on the printing of porous glass products employing a ZMORPH 3D printer equipped with a thick paste extruder were developed. The method of preparing glass/gelatin and glass/agar pastes for 3D printing was tested experimentally. Mixtures with different contents of gelatin or agar, glass, and water were analyzed, and conditions for their storage from the time the paste components were mixed to the time they were loaded into the 3D printer were determined. The optimal 3D printing parameters were chosen with the Voxelizer software for the ZMORPH 3D printer with a thick paste extruder. A modification to the ceramic module for printing with pastes was proposed. The heat treatment process at 160 and 260 degrees C and sintering at 600-650 degrees C for the printed samples were studied. The temperature threshold at which a powdered glass material sintered without transiting to the molten state was found experimentally by choosing optimal temperatures and holding times. Heat treatment resulted in glass samples of complex shape. The samples reached 49% porosity. The mechanical properties and microstructure of the sintered porous glass samples were analyzed. The wear resistance and fracture of the samples were examined by repeated scratching with a conical diamond indenter.
引用
收藏
页码:546 / 555
页数:10
相关论文
共 50 条
  • [31] Fabrication of the porous hydroxyapatite implant by 3D printing
    Qian, Chao
    Sun, Jian
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2013, 14 (04): : 513 - 516
  • [33] 3D Printing and Biocementation of Hierarchical Porous Ceramics
    Dutto, Alessandro
    Bianda, Eleonora
    Melo, Joshua G.
    Saraw, Zoubeir
    Tervoort, Elena
    Studart, Andre R.
    ADVANCED MATERIALS TECHNOLOGIES, 2024,
  • [34] 3D printing of porous materials for catalytic applications
    Blasczak, Vanua
    Manzano, Sebastian
    Slowing, Igor
    Grubbs, William
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [35] Hydrocolloid Inks for 3D Printing of Porous Hydrogels
    Sears, Nicholas A.
    Wilems, Thomas S.
    Gold, Karli A.
    Lan, Ziyang
    Cereceres, Stacy N.
    Dhavalikar, Prachi S.
    Foudazi, Reza
    Cosgriff-Hernandez, Elizabeth M.
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (02)
  • [36] 3D Printing of Hierarchical Porous Silica and α-Quartz
    Putz, Florian
    Scherer, Sebastian
    Ober, Michael
    Morak, Roland
    Paris, Oskar
    Huesing, Nicola
    ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (07):
  • [37] A system for designing and 3D printing of porous structures
    Ullah, A. M. M. Sharif
    Kiuno, Hiroki
    Kubo, Akihiko
    D'Addona, Doriana Marilena
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2020, 69 (01) : 113 - 116
  • [38] 3D printing on glass for direct sensor integration
    Neubauer, M.
    McGlennen, M.
    Thomas, S.
    Warnat, S.
    ENGINEERING RESEARCH EXPRESS, 2019, 1 (02):
  • [39] Present state of 3D printing from glass
    Hotar, Vlastimil
    Stara, Marie
    Makova, Veronika
    Holubova, Barbora Nikendey
    PURE AND APPLIED CHEMISTRY, 2022, 94 (02) : 169 - 179
  • [40] Printing 3D Metallic Structures in Porous Matrix
    Fan, Xiaolin
    Wang, Xue
    Ye, Yuanxiang
    Ye, Ying
    Su, Yuming
    Zhang, Yusheng
    Wang, Cheng
    SMALL, 2024, 20 (31)