High-speed excited multi-solitons in nonlinear Schrodinger equations

被引:34
作者
Cote, Raphael [1 ]
Le Coz, Stefan [2 ]
机构
[1] Ecole Polytech, CMLS, F-91128 Palaiseau, France
[2] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris 05, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2011年 / 96卷 / 02期
关键词
Multi-solitons; Nonlinear Schrodinger equations; Excited states; SCALAR FIELD-EQUATIONS; SUPERCRITICAL GKDV EQUATIONS; SOLITARY WAVES; MULTISOLITON SOLUTIONS; THRESHOLD SOLUTIONS; EXPONENTIAL DECAY; STABILITY THEORY; STANDING WAVES; GROUND-STATES; NLS;
D O I
10.1016/j.matpur.2011.03.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear Schrodinger equation in R-d i partial derivative(t)u + Delta u + f(u) = 0. For d >= 2. this equation admits traveling wave solutions of the form e(i omega t)Phi(x) (up to a Galilean transformation), where Phi is a fixed profile, solution to -Delta Phi + omega Phi = f(Phi), but not the ground state. This kind of profiles are called excited states. In this paper, we construct solutions to NLS behaving like a sum of N excited states which spread up quickly as time grows (which we call multi-solitons). We also show that if the flow around one of these excited states is linearly unstable, then the multi-soliton is not unique, and is unstable. (C) 2011 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:135 / 166
页数:32
相关论文
共 39 条
[1]  
Abramowitz M., 2013, Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables, V(eds)
[2]  
[Anonymous], 1991, MATH ITS APPL
[3]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[4]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P347
[5]  
BERESTYCKI H, 1983, CR ACAD SCI I-MATH, V297, P307
[6]  
BERESTYCKI H, 1981, CR ACAD SCI I-MATH, V293, P489
[7]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[8]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561
[9]  
Cazenave Th., 2003, COURANT LECT NOTES M
[10]   Spectra of linearized operators for NLS solitary waves [J].
Chang, Shu-Ming ;
Gustafson, Stephen ;
Nakanishi, Kenji ;
Tsai, Tai-Peng .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (04) :1070-1111