Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons

被引:601
作者
Caldwell, Joshua D. [1 ]
Lindsay, Lucas [2 ]
Giannini, Vincenzo [3 ]
Vurgaftman, Igor [1 ]
Reinecke, Thomas L. [1 ]
Maier, Stefan A. [3 ]
Glembocki, Orest J. [1 ]
机构
[1] US Navy, Res Lab, 4555 Overlook Ave, Washington, DC 20375 USA
[2] NRL, Washington, DC USA
[3] Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, London, England
基金
英国工程与自然科学研究理事会;
关键词
Reststrahlen; phonon; -; polariton; plasmonics; polar dielectric; nanophotonic; metamaterial; infrared; terahertz; ATOMIC LAYER DEPOSITION; OPTICAL-PROPERTIES; RAMAN-SCATTERING; TEMPERATURE-DEPENDENCE; STACKING-FAULTS; GRAPHENE PLASMONICS; DIELECTRIC-CONSTANT; TITANIUM NITRIDE; LARGE-AREA; SILICON;
D O I
10.1515/nanoph-2014-0003
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The excitation of surface-phonon-polariton (SPhP) modes in polar dielectric crystals and the associated new developments in the field of SPhPs are reviewed. The emphasis of this work is on providing an understanding of the general phenomenon, including the origin of the Reststrahlen band, the role that optical phonons in polar dielectric lattices play in supporting sub-diffraction-limited modes and how the relatively long optical phonon lifetimes can lead to the low optical losses observed within these materials. Based on this overview, the achievements attained to date and the potential technological advantages of these materials are discussed for localized modes in nanostructures, propagating modes on surfaces and in waveguides and novel metamaterial designs, with the goal of realizing low-loss nanophotonics and metamaterials in the mid-infrared to terahertz spectral ranges.
引用
收藏
页码:44 / 68
页数:25
相关论文
共 181 条
[1]  
Adachi S., 1999, RESTSTRAHLEN REGION, P33
[2]   Funneling Light through a Subwavelength Aperture with Epsilon-Near-Zero Materials [J].
Adams, D. C. ;
Inampudi, S. ;
Ribaudo, T. ;
Slocum, D. ;
Vangala, S. ;
Kuhta, N. A. ;
Goodhue, W. D. ;
Podolskiy, V. A. ;
Wasserman, D. .
PHYSICAL REVIEW LETTERS, 2011, 107 (13)
[3]   Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays [J].
Adato, Ronen ;
Yanik, Ahmet A. ;
Amsden, Jason J. ;
Kaplan, David L. ;
Omenetto, Fiorenzo G. ;
Hong, Mi K. ;
Erramilli, Shyamsunder ;
Altug, Hatice .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (46) :19227-19232
[4]   Temperature dependence of optical phonon lifetimes in ZnSe [J].
Anand, S ;
Verma, P ;
Jain, KP ;
Abbi, SC .
PHYSICA B, 1996, 226 (04) :331-337
[5]  
Anderson MS, 2003, APPL PHYS LETT, V83, P2964, DOI [10.1063/1.1615317, 10.1063/1.1615311]
[6]  
Ashcroft NW., 1976, SOLID STATE PHYS
[7]   Infrared dielectric functions and phonon modes of high-quality ZnO films [J].
Ashkenov, N ;
Mbenkum, BN ;
Bundesmann, C ;
Riede, V ;
Lorenz, M ;
Spemann, D ;
Kaidashev, EM ;
Kasic, A ;
Schubert, M ;
Grundmann, M ;
Wagner, G ;
Neumann, H ;
Darakchieva, V ;
Arwin, H ;
Monemar, B .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (01) :126-133
[8]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/NMAT2629, 10.1038/nmat2629]
[9]   Plasmonic Light-Harvesting Devices over the Whole Visible Spectrum [J].
Aubry, Alexandre ;
Lei, Dang Yuan ;
Fernandez-Dominguez, Antonio I. ;
Sonnefraud, Yannick ;
Maier, Stefan A. ;
Pendry, J. B. .
NANO LETTERS, 2010, 10 (07) :2574-2579
[10]   Phonons and related crystal properties from density-functional perturbation theory [J].
Baroni, S ;
de Gironcoli, S ;
Dal Corso, A ;
Giannozzi, P .
REVIEWS OF MODERN PHYSICS, 2001, 73 (02) :515-562