Triplet-Loss Based Siamese Convolutional Neural Network for 4-Way Classification of Alzheimer's Disease

被引:18
作者
Shaffi, Noushath [1 ]
Hajamohideen, Faizal [1 ]
Mahmud, Mufti [2 ,3 ,4 ]
Abdesselam, Abdelhamid [5 ]
Subramanian, Karthikeyan [1 ]
Al Sariri, Arwa [1 ]
机构
[1] Univ Technol & Appl Sci Sohar, Dept Informat Technol, Sohar 311, Oman
[2] Nottingham Trent Univ, Dept Comp Sci, Nottingham NG11 8NS, England
[3] Nottingham Trent Univ, CIRC, Nottingham NG11 8NS, England
[4] Nottingham Trent Univ, MTIF, Nottingham NG11 8NS, England
[5] Sultan Qaboos Univ, Dept Comp Sci, Muscat 123, Oman
来源
BRAIN INFORMATICS (BI 2022) | 2022年 / 13406卷
关键词
Structural magnetic resonance imaging; Alzheimer's disease; Mild cognitive impairment; Triplet-loss; Siamese CNN;
D O I
10.1007/978-3-031-15037-1_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Alzheimer's disease (AD) is a neurodegenerative disease that causes irreversible damage to several brain regions including the hippocampus causing impairment in cognition, function and behaviour. Earlier diagnosis of the disease will reduce the suffering of the patients and their family members. Towards that aim, this paper presents a Siamese Convolutional Neural Network (CNN) based model using the Triplet-loss function for the 4-way classification of AD. We evaluated our models using both pre-trained and non-pre-trained CNNs. The models' efficacy was tested on the OASIS dataset and obtained satisfactory results under a data-scarce real-time environment.
引用
收藏
页码:277 / 287
页数:11
相关论文
共 19 条
[1]   Analysis of brain sub regions using optimization techniques and deep learning method in Alzheimer disease [J].
Chitradevi, D. ;
Prabha, S. .
APPLIED SOFT COMPUTING, 2020, 86
[2]  
Jahan S. I., 2022, Export performance of Bangladesh during the pandemic: The impact of export concentration, P1
[3]   Do Better ImageNet Models Transfer Better? [J].
Kornblith, Simon ;
Shlens, Jonathon ;
Le, Quoc V. .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2656-2666
[4]  
LaMontagne PJ, 2019, medRxiv, DOI [10.1101/2019.12.13.19014902, 10.1101/2019.12.13.19014902, DOI 10.1101/2019.12.13.19014902, 10.1101/ 2019.12.13.19014902]
[5]   Using deep Siamese neural networks for detection of brain asymmetries associated with Alzheimer's Disease and Mild Cognitive Impairment [J].
Liu, Chin-Fu ;
Padhy, Shreyas ;
Ramachandran, Sandhya ;
Wang, Victor X. ;
Efimov, Andrew ;
Bernal, Alonso ;
Shi, Linyuan ;
Vaillant, Marc ;
Ratnanather, J. Tilak ;
Faria, Andreia V. ;
Caffo, Brian ;
Albert, Marilyn ;
Miller, Michael I. .
MAGNETIC RESONANCE IMAGING, 2019, 64 :190-199
[6]   Deep Learning in Mining Biological Data [J].
Mahmud, Mufti ;
Kaiser, M. Shamim ;
McGinnity, T. Martin ;
Hussain, Amir .
COGNITIVE COMPUTATION, 2021, 13 (01) :1-33
[7]   Applications of Deep Learning and Reinforcement Learning to Biological Data [J].
Mahmud, Mufti ;
Kaiser, Mohammed Shamim ;
Hussain, Amir ;
Vassanelli, Stefano .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (06) :2063-2079
[8]   A Transfer Learning Approach for Early Diagnosis of Alzheimer?s Disease on MRI Images [J].
Mehmood, Atif ;
Yang, Shuyuan ;
Feng, Zhixi ;
Wang, Min ;
Ahmad, Al Smadi ;
Khan, Rizwan ;
Maqsood, Muazzam ;
Yaqub, Muhammad .
NEUROSCIENCE, 2021, 460 :43-52
[9]   A Deep Siamese Convolution Neural Network for Multi-Class Classification of Alzheimer Disease [J].
Mehmood, Atif ;
Maqsood, Muazzam ;
Bashir, Muzaffar ;
Yang Shuyuan .
BRAIN SCIENCES, 2020, 10 (02)
[10]   A deep feature-based real-time system for Alzheimer disease stage detection [J].
Nawaz, Hina ;
Maqsood, Muazzam ;
Afzal, Sitara ;
Aadil, Farhan ;
Mehmood, Irfan ;
Rho, Seungmin .
MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (28-29) :35789-35807