Protective effect of Dendrobium officinale polysaccharides on H2O2-induced injury in H9c2 cardiomyocytes

被引:40
|
作者
Zhao, Xiaoyan [1 ]
Dou, Mengmeng [4 ]
Zhang, Zhihao [1 ]
Zhang, Duoduo [1 ]
Huang, Chengzhi [2 ,3 ]
机构
[1] Southwest Univ, Coll Pharmaceut Sci, 2 Tiansheng Rd, Chongqing 400716, Peoples R China
[2] Southwest Univ, Coll Pharmaceut Sci, Minist Educ, Key Lab Luminescence & Real Time Analyt Chem, Chongqing 400716, Peoples R China
[3] Southwest Univ, Coll Chem & Chem Engn, Chongqing Sci & Technol Commiss, Chongqing Key Lab Biomed Anal, Chongqing 400716, Peoples R China
[4] Peoples Hosp Gaotang Cty, Dept Pharm, Liaocheng 252800, Shandong, Peoples R China
关键词
H9c2; cells; Oxidative stress; Reactive oxygen species; Cardio-protective; INDUCED MYOCARDIAL-INFARCTION; OXIDATIVE STRESS; ISCHEMIA/REPERFUSION INJURY; INFLAMMATORY CYTOKINES; NITRIC-OXIDE; HUMAN LIVER; CELL-DEATH; IN-VIVO; ISCHEMIA; APOPTOSIS;
D O I
10.1016/j.biopha.2017.07.096
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The preliminary studies have shown that Dendrobium officinale possessed therapeutic effects on hypertension and atherosclerosis. Studies also reported that Dendrobium officinale polysaccharides showed antioxidant capabilities. However, little is known about its effects on myocardial cells under oxidative stress. The present study was designed to study the protective effect of Dendrobium officinale polysaccharides against H2O2-induced oxidative stress in H9c2 cells. MTT assay was carried out to determine the cell viability of H9c2 cells when pretreated with Dendrobium officinale polysaccharides. Fluorescent microscopy measurements were performed for evaluating the apoptosis in H9c2 cells. Furthermore, effects of Dendrobium officinale polysaccharides on the activities of antioxidative indicators (malondialdehyde, superoxide dismutase), reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) levels were analyzed. Dendrobium officinale polysaccharides attenuated H2O2-induced cell death, as determined by the MTT assay. Dendrobium officinale polysaccharides decreased malondialdehyde levels, increased superoxide dismutase activities, and inhibited the generation of intracellular ROS. Moreover, pretreatment with Dendrobium officinale polysaccharides also inhibited apoptosis and increased the MMP levels in H9c2 cells. These results suggested the protective effects of Dendrobium officinale polysaccharides against H2O2-induced injury in H9c2 cells. The results also indicated the anti-oxidative capability of Dendrobium officinale polysaccharides. (C) 2017 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:72 / 78
页数:7
相关论文
共 50 条
  • [31] Three Isoflavonoid Glycosides from the Rhizomes of Achyranthes bidentata and their Protective Effects on H2O2 Induced H9c2 Cardiomyocytes Injury
    Li, Yue
    Chi, Jun
    Wang, Ping
    Zhang, Lingxia
    Li, Qingxia
    Feng, Qingmei
    Dai, Liping
    Wang, Zhimin
    RECORDS OF NATURAL PRODUCTS, 2022, 16 (02) : 110 - 117
  • [32] Polysaccharides from Annona Muricata Leaves Protect Against H2O2-Induced Oxidative Stress in H9c2 Myoblasts
    Yoo, Bo-Gyeong
    Hong, Jun-Pyo
    Kang, Bo Sun
    Byun, Eui-Baek
    Byun, Eui-Hong
    JOURNAL OF MEDICINAL FOOD, 2025, 28 (02) : 174 - 181
  • [33] Protective and antiapoptotic effects of luteolin on oxidative injury in H9C2 cardiomyocytes
    Chang, Hong
    Wang, Wei
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2015, 66 (16) : C62 - C63
  • [34] Protective Effect of Fasudil on Hydrogen Peroxide-Induced Oxidative Stress Injury of H9C2 Cardiomyocytes
    Zhang, Yu
    Liu, Shanxin
    Li, Xiaochun
    Ye, Jian
    DISEASE MARKERS, 2021, 2021
  • [35] Hydrogen sulfide protects H9c2 cardiomyoblasts against H2O2-induced apoptosis
    Zhang, You En
    Huang, Guang Qing
    Wu, Bing
    Lin, Xin Duo
    Yang, Wen Zi
    Ke, Zun Yu
    Liu, Jie
    BRAZILIAN JOURNAL OF MEDICAL AND BIOLOGICAL RESEARCH, 2019, 52 (04)
  • [36] Effects of Resveratrol on H2O2-Induced Apoptosis and Expression of SIRTs in H9c2 Cells
    Yu, Wei
    Fu, Yu-Cai
    Zhou, Xiao-Hui
    Chen, Chun-Juan
    Wang, Xin
    Lin, Rui-Bo
    Wang, Wei
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2009, 107 (04) : 741 - 747
  • [37] Hypothermia protects H9c2 cardiomyocytes from H2O2 induced apoptosis
    Diestel, Antje
    Drescher, Cornelia
    Miera, Oliver
    Berger, Felix
    Schmitt, Katharina Rose Luise
    CRYOBIOLOGY, 2011, 62 (01) : 53 - 61
  • [38] Dracocephalum moldavica L. Extracts Protect H9c2 Cardiomyocytes against H2O2-Induced Apoptosis and Oxidative Stress
    Jin, Min
    Yu, Hui
    Jin, Xia
    Yan, Lailai
    Wang, Jingyu
    Wang, Zhanli
    BIOMED RESEARCH INTERNATIONAL, 2020, 2020
  • [39] Calenduloside E Analogues Protecting H9c2 Cardiomyocytes Against H2O2-Induced Apoptosis: Design, Synthesis and Biological Evaluation
    Tian, Yu
    Du, Yu-Yang
    Shang, Hai
    Wang, Min
    Sun, Zhong-Hao
    Wang, Bao-Qi
    Deng, Di
    Wang, Shan
    Xu, Xu-Dong
    Sun, Gui-Bo
    Sun, Xiao-Bo
    FRONTIERS IN PHARMACOLOGY, 2017, 8
  • [40] miR-19b attenuates H2O2-induced apoptosis in rat H9C2 cardiomyocytes via targeting PTEN
    Xu, Jiahong
    Tang, Yu
    Bei, Yihua
    Ding, Shengguang
    Che, Lin
    Yao, Jianhua
    Wang, Hongbao
    Lv, Dongchao
    Xiao, Junjie
    ONCOTARGET, 2016, 7 (10) : 10870 - 10878