Protective effect of Dendrobium officinale polysaccharides on H2O2-induced injury in H9c2 cardiomyocytes

被引:40
|
作者
Zhao, Xiaoyan [1 ]
Dou, Mengmeng [4 ]
Zhang, Zhihao [1 ]
Zhang, Duoduo [1 ]
Huang, Chengzhi [2 ,3 ]
机构
[1] Southwest Univ, Coll Pharmaceut Sci, 2 Tiansheng Rd, Chongqing 400716, Peoples R China
[2] Southwest Univ, Coll Pharmaceut Sci, Minist Educ, Key Lab Luminescence & Real Time Analyt Chem, Chongqing 400716, Peoples R China
[3] Southwest Univ, Coll Chem & Chem Engn, Chongqing Sci & Technol Commiss, Chongqing Key Lab Biomed Anal, Chongqing 400716, Peoples R China
[4] Peoples Hosp Gaotang Cty, Dept Pharm, Liaocheng 252800, Shandong, Peoples R China
关键词
H9c2; cells; Oxidative stress; Reactive oxygen species; Cardio-protective; INDUCED MYOCARDIAL-INFARCTION; OXIDATIVE STRESS; ISCHEMIA/REPERFUSION INJURY; INFLAMMATORY CYTOKINES; NITRIC-OXIDE; HUMAN LIVER; CELL-DEATH; IN-VIVO; ISCHEMIA; APOPTOSIS;
D O I
10.1016/j.biopha.2017.07.096
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The preliminary studies have shown that Dendrobium officinale possessed therapeutic effects on hypertension and atherosclerosis. Studies also reported that Dendrobium officinale polysaccharides showed antioxidant capabilities. However, little is known about its effects on myocardial cells under oxidative stress. The present study was designed to study the protective effect of Dendrobium officinale polysaccharides against H2O2-induced oxidative stress in H9c2 cells. MTT assay was carried out to determine the cell viability of H9c2 cells when pretreated with Dendrobium officinale polysaccharides. Fluorescent microscopy measurements were performed for evaluating the apoptosis in H9c2 cells. Furthermore, effects of Dendrobium officinale polysaccharides on the activities of antioxidative indicators (malondialdehyde, superoxide dismutase), reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) levels were analyzed. Dendrobium officinale polysaccharides attenuated H2O2-induced cell death, as determined by the MTT assay. Dendrobium officinale polysaccharides decreased malondialdehyde levels, increased superoxide dismutase activities, and inhibited the generation of intracellular ROS. Moreover, pretreatment with Dendrobium officinale polysaccharides also inhibited apoptosis and increased the MMP levels in H9c2 cells. These results suggested the protective effects of Dendrobium officinale polysaccharides against H2O2-induced injury in H9c2 cells. The results also indicated the anti-oxidative capability of Dendrobium officinale polysaccharides. (C) 2017 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:72 / 78
页数:7
相关论文
共 50 条
  • [21] Protective effects of ginsenoside Rg2 against H2O2-induced injury and apoptosis in H9c2 cells
    Fu, Wenwen
    Sui, Dayun
    Yu, Xiaofeng
    Gou, Dongxia
    Zhou, Yifa
    Xu, Huali
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2015, 8 (11): : 19938 - 19947
  • [22] Baicalin alleviates H2O2-induced injury of H9c2 cardiomyocytes through suppression of the Wnt/β-catenin signaling pathway
    Qiu, Liman
    Chen, Jinxiao
    Lin, Jing
    Wo, Da
    Chu, Jianfeng
    Peng, Jun
    MOLECULAR MEDICINE REPORTS, 2017, 16 (06) : 9251 - 9255
  • [23] Levocarnitine Protects H9c2 Rat Cardiomyocytes from H2O2-induced Mitochondrial Dysfunction and Apoptosis
    Mao, Cui-Ying
    Lu, Hai-Bin
    Kong, Ning
    Li, Jia-Yu
    Liu, Miao
    Yang, Chun-Yan
    Yang, Ping
    INTERNATIONAL JOURNAL OF MEDICAL SCIENCES, 2014, 11 (11): : 1107 - 1115
  • [24] Proteomics Research on the Protective Effect of Mangiferin on H9C2 Cell Injury Induced by H2O2
    Guan, Wei
    Liu, Yan
    Liu, Yuan
    Wang, Qi
    Ye, Hong-Liang
    Cheng, Yan-Gang
    Kuang, Hai-Xue
    Jiang, Xi-Cheng
    Yang, Bing-You
    MOLECULES, 2019, 24 (10)
  • [25] Alteration of N-glycosylation of CDON promotes H2O2-induced DNA damage in H9c2 cardiomyocytes
    Chen, Liping
    Liu, Hongfei
    Zhan, Wenxing
    Long, Changkun
    Xu, Fang
    Li, Xueer
    Tian, Xiao-Li
    Chen, Shenghan
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2024, 176
  • [26] Protective Effect of Swertiamarin on H2O2-Induced Apoptosis of Mice Cardiomyocytes
    XU Xian-yun1
    2.College of Pharmacy
    Medicinal Plant, 2010, (11) : 47 - 49
  • [27] Protective effect of Sargassum fusiforme polysaccharides on H2O2-induced injury in LO2 cells
    Li, Jiarui
    Wang, Zhuo
    Chen, Jianping
    Luo, Baozhen
    Chen, Xuehua
    Li, Rui
    Gao, Jialong
    Liu, Xiaofei
    Song, Bingbing
    Zhong, Saiyi
    FRONTIERS IN MARINE SCIENCE, 2023, 9
  • [28] Serum Exosomes Attenuate H2O2-Induced Apoptosis in Rat H9C2 Cardiomyocytes via ERK1/2
    Pengfei Li
    Zhuyuan Liu
    Yuan Xie
    Huanyu Gu
    Qiying Dai
    Jianhua Yao
    Lei Zhou
    Journal of Cardiovascular Translational Research, 2019, 12 : 37 - 44
  • [29] Serum Exosomes Attenuate H2O2-Induced Apoptosis in Rat H9C2 Cardiomyocytes via ERK1/2
    Li, Pengfei
    Liu, Zhuyuan
    Xie, Yuan
    Gu, Huanyu
    Dai, Qiying
    Yao, Jianhua
    Zhou, Lei
    JOURNAL OF CARDIOVASCULAR TRANSLATIONAL RESEARCH, 2019, 12 (01) : 37 - 44
  • [30] Protective effects of clovamide against H2O2-induced stress in rat cardiomyoblasts H9c2 cell line
    Zamperone, Andrea
    Pietronave, Stefano
    Colangelo, Donato
    Antonini, Silvia
    Locatelli, Monica
    Travaglia, Fabiano
    Coisson, Jean Daniel
    Arlorio, Marco
    Prat, Maria
    FOOD & FUNCTION, 2014, 5 (10) : 2542 - 2551